The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Answer:
1.8 × 10⁻⁸ Hm
Explanation:
Given that:
The refractive index of the film = 19
The wavelength of the light = 136.8 μ m
The thickness can be calculated by using the formula shown below as:
Where, n is the refractive index of the film
is the wavelength
So, thickness is:
Thickness = 1.8 μ m
Since,
1 μ m = 10⁻⁸ Hm
So,
Thickness = 1.8 × 10⁻⁸ Hm
Answer:
Well the definition of an application is the act of putting to a special use or purpose so lam assuming that you want specific uses that scientists make of gravity in their work.
Well our first application has helped us to send satellites around the solar system with what Nasa calls gravity assist. Using a particular planets gravity to slingshot a satellite to another destination. Look it up.
The next application much simpler but here on Earth. There are many hydro-electric power stations in use all over the world. Water is stored at a high level and released falling 100s of metres to a turbine where it generates electricity.
Hope that helps.
Explanation: