During either one, the sun, moon, and Earth are lined up in the same straight line. The difference is whether the moon or the Earth is the one in the "middle".
Answer:
The percentage change in resistance of the wire is 69%.
Explanation:
Resistance of a wire can be determined by,
R = (ρl) ÷ A
Where R is its resistance, l is the length of the wire, A its cross sectional area and ρ its resistivity.
When the wire is stretched, its length and area changes but its volume and resistivity remains constant.
= 1.3l, and
= 
So that;
= (ρ
) ÷
= (ρ × 1.3l) ÷ (
)
= (1.3lρ) ÷ (
)
=
× [(ρl) ÷ A]
= 1.69R (∵ R = (ρl) ÷ A)
= 1.69R
Where
is the new resistance,
is the new length, and
is the new area after stretching the wire.
The change in resistance of the wire =
- R
= 1.69R - 1R
= 0.69R
The percentage change in resistance =
× 100
= 0.69 × 100
= 69%
The percentage change in resistance of the wire is 69%.
Answer:
10 m/s
Explanation:
Use the kinetic energy formula:
KE=(1/2)mv^2
I always remember it as Kevin is half-mad, and very square.
25J = (1/2)*0.5kg*(v^2)
50J = 0.5kg*(v^2)
100J = v^2
v = 10 m/s
Check it:
KE = (1/2)*0.5*(10^2)
KE = 25J
yep, it's right!
The original amount of the radioactive isotope will be 8 grams.
<h3 /><h3>What is the half-life of radioisotopes?</h3>
The amount of time required for half of a radioisotope's nuclide to decay, or change into a different species, is known as its half-life. The conversions release either beta or alpha particles, and the response can be monitored by counting the particles released.
Given that an unknown amount of a radioactive isotope with a half-life of 2.0 h was observed for 6.0 h. if the amount of the isotope remaining after 6.0 h was 24 g.
The original amount will be calculated as below:-
( 2 / 6 ) = ( Original amount / 24 )
Original amount = 4 x 2
Original amount = 8 grams
Therefore, the original amount of the radioactive isotope will be 8 grams.
To know more about the half-life of radioisotopes follow
brainly.com/question/1783783
#SPJ4