The best way to determine the number of atoms of arsenic in the sample will be to multiply 2.3 by Avagadro's number.
This is because Avagadro's number is the number of particles one mole of any substance has, and its value is 6.02 x 10²³
If the number of moles of a substance are known, then multiplying by Avagadro's number will give the number of particles. In this case, this is 1.38 x 10²⁴.
Answer:
V = 6.17 L
Explanation:
Given data:
Volume = ?
Number of moles = 0.382 mol
Pressure = 1.50 atm
Temperature = 295 k
R = 0.0821 L. atm. /mol. k
Solution:
According to ideal gas equation:
PV= nRT
V = nRT/P
V = 0.382 mol × 0.0821 L. atm. /mol. k ×295 k / 1.50 atm
V = 9.252 L. atm. / 1.50 atm
V = 6.17 L
In cell biology, the cytoplasm is the material or protoplasm within a living cell, excluding the cell nucleus. It comprises cytosol (the gel-like substance enclosed within the cell membrane) and the organelles – the cell's internal sub-structures. All of the contents of the cells of prokaryote organisms (such as bacteria, which lack a cell nucleus) are contained within the cytoplasm. Within the cells of eukaryote organisms the contents of the cell nucleus are separated from the cytoplasm, and are then called thenucleoplasm. The cytoplasm is about 80% water and usually colorless.[1]
It is within the cytoplasm that most cellular activities occur, such as many metabolic pathways including glycolysis, and processes such as cell division. The concentrated inner area is called the endoplasm and the outer layer is called the cell cortex or theectoplasm.
Movement of calcium ions in and out of the cytoplasm is a signaling activity for metabolic processes.[2]
In plants, movement of the cytoplasm around vacuoles is known as cytoplasmic streaming.
The answer would be:
D = M/V
D=Density
M= mass
V= volume