D. Both exhibit the same particle-to-particle interaction.Because disturbance is propagated with the help of particles. Other than this,[ <span>light waves are electromagnetic waves. ocean waves and sound waves are mechanical waves. they are able to transfer energy. electromagnetic wave and ocean waves are transverse waves while sound waves are the longitudinal wave. they show wave properties: reflection, refraction, diffraction, interference, and plane-polarization. longitudinal waves such as sound waves cannot be plane-polarized]. The one in the box shows different examples of waves with their examples. Hope it helps.</span>
Answer:
- The emf of the generator is 6V
- The internal resistance of the generator is 1 Ω
Explanation:
Given;
terminal voltage, V = 5.7 V, when the current, I = 0.3 A
terminal voltage, V = 5.1 V, when the current, I = 0.9 A
The emf of the generator is calculated as;
E = V + Ir
where;
E is the emf of the generator
r is the internal resistance
First case:
E = 5.7 + 0.3r -------- (1)
Second case:
E = 5.1 + 0.9r -------- (2)
Since the emf E, is constant in both equations, we will have the following;
5.1 + 0.9r = 5.7 + 0.3r
collect similar terms together;
0.9r - 0.3r = 5.7 - 5.1
0.6r = 0.6
r = 0.6/0.6
r = 1 Ω
Now, determine the emf of the generator;
E = V + Ir
E = 5.1 + 0.9x1
E = 5.1 + 0.9
E = 6 V
Answer:
51 Ω.
Explanation:
We'll begin by calculating the equivalent resistance of R₁ and R₃. This can be obtained as follow:
Resistor 1 (R₁) = 40 Ω
Resistor 3 (R₃) = 70.8 Ω
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) =?
Since the two resistors are in parallel connection, their equivalent can be obtained as follow:
R₁ₙ₃ = R₁ × R₃ / R₁ + R₃
R₁ₙ₃ = 40 × 70.8 / 40 + 70.8
R₁ₙ₃ = 2832 / 110.8
R₁ₙ₃ = 25.6 Ω
Finally, we shall determine the equivalent resistance of the group. This can be obtained as follow:
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) = 25.6 Ω
Resistor 2 (R₂) = 25.4 Ω
Equivalent Resistance (Rₑq) =?
Rₑq = R₁ₙ₃ + R₂ (series connection)
Rₑq = 25.6 + 25.4
Rₑq = 51 Ω
Therefore, the equivalent resistance of the group is 51 Ω.
Answer:
36.125 J
Explanation:
The formula for kinetic energy is KE = .5(m)(v²).
Using the given information, mass = 1 g and v = 8.50. Plug that information into the equation. KE = .5(1)(8.50²) = 36.125 J.
The SI unit for velocity and speed is meters per second