Answer:
0.3 eV, 0.5eV,, 8 eV, 2.0eV, 2.50 eV, 2.8 eV
Explanation:
In a given material the emission and absorption spectra are equivalent, for which the emission spectrum observed at high temperature for the material corresponds to the transition between the energy states of the material, the process is that the electrons exist from the ground state until an excited state and after a short period of time or these electrons relax emitting photons.
In the absorption process, the material is at low temperature, ideally at A = 0K, whereby all states are in the ground state and all excited states are empty. therefore it can absorb the beam energy for each transition given from the ground state to each excited edtado.
Consequently, the lines above the absorption oscillate lines coincide with the lines of emotion, this we see lines oscillate at 0.3 eV, 0.5eV,, 8 eV, 2.0eV, 2.50 eV, 2.8 eV
Answer:
D) Insects would have trouble walking on the water.
Explanation:
Answer:
f" = 40779.61 Hz
Explanation:
From the question, we see that the bat is the source of the sound wave and is initially at rest and the object is in motion as the observer, thus;
from the Doppler effect equation, we can calculate the initial observed frequency as:
f' = f(1 - (v_o/v))
We are given;
f = 46.2 kHz = 46200 Hz
v_o = 21.8 m/s
v is speed of sound = 343 m/s
Thus;
f' = 46200(1 - (21/343))
f' = 43371.4285 Hz
In the second stage, we see that the bat is now a stationary observer while the object is now the moving source;
Thus, from doppler effect again but this time with the source going away from the obsever, the new observed frequency is;
f" = f'/(1 + (v_o/v))
f" = 43371.4285/(1 + (21.8/343))
f" = 40779.61 Hz
Answer: This is true
Explanation: v2=800/25= 32m/s