(a) The reactance of the inductor is 25.46 ohms.
(b) The expression for the current through the inductor is I(t) = (6.32 A) sin(134t)
<h3>Ractance of the inductor</h3>
The reactance of the inductor is calculated as follows;
XL = ωL
where;
- ω is angular frequency
- L is 190 mH
v(t) = (161 V) sin(134t)
v(t) = V sin(ωt)
The reactance of the inductor is calculated as follows;
XL = (134) x (190 x 10⁻³)
XL = 25.46 ohms
<h3>Peak current in the circuit</h3>
I₀ = V₀/XL
I₀ = (161) / (25.46)
I₀ = 6.32 A
<h3>Expression for the current through the inductor</h3>
I(t) = (6.32 A) sin(134t)
Learn more about inductance here: brainly.com/question/16765199
<span>This law means that when one object exerts force on another, the same amount of force is exerted on the initial object, but in the opposite reaction. For example, when a billiard ball strikes another ball, the second ball is propelled forward. Simultaneously, the momentum of the first ball is slowed or stopped by opposing force. The amount that the first object is affected by the opposing force depends on the mass and motion of the second object.</span>
Answer:
Acceleration = 4.8 m/s²
Explanation:
Given:
Change in velocity = 19 m/s
Change in time = 4 s
Find:
Acceleration
Computation:
Acceleration = Change in velocity / Change in time
Acceleration = 19/4
Acceleration = 4.8 m/s²
Positive acceleration
Explanation:
The triple beam balance is used to measure masses very precisely; the reading error is 0.05g