The answer is B.
The planet cannot be too hot or too cold it has to be the right distance from its sun to maintain life.
Answer:
The answer to your question is weight = 1667 N
Explanation:
Data
density = 2.40 x 10³ kg/m³
volume = 0.0708 m³
Force = 66.7 N
weight of the block = ?
- Formula
density = mass / volume
- Solve for mass
mass = density x volume
-Substitution
mass = (2.40 x 10³)(0.0708)
-Result
mass = 169.92 kg
-Calculate the weight of the body
weight = mass x gravity
-Substitution
weight = 169.92 x 9.82
-Simplification
weight = 1666.9 N ≈ 1667 N
Q: An appliance with a 20 Ω resistor has a power rating of 15.0 W. Find the maximum current which can flow safely through the appliance g
Answer:
0.866 A
Explanation:
From the question,
P = I²R............................. Equation 1
Where P = power, I = maximum current, R = Resistance.
Make I the subject of the equation
I = √(P/R).................... Equation 2
Given: P = 15 W, R = 20 Ω
Substitute these values into equation 2
I = √(15/20)
I = √(0.75)
I = 0.866 A
Hence the maximum current that can flow safely through the appliance = 0.866 A
<span>The correct answer is B. Inverted image. This is because of all the lenses and light refractions and what not. The same things happens with our eyes except our brains fix the inverted image automatically. Since there are no brains in a projector, you have to fix it on your own by putting it in reverse.</span>
Answer:
The correct option is;
B. 8 m, because he has to apply less force over a greater distance
Explanation:
In the given question, in order for the student to lift the boxes onto the tuck with less amount of force, he applies the principle of Mechanical Advantage
The mechanical advantage is given by the measure by which a force is amplified through the use of a tool
Given that the work done = The force × The distance, we have
F₁ × d₁ = F₂ × d₂, which gives;
d₁/d₂ = F₂/F₁
Where;
F₁ = The input force
F₂ = The output force
d₁ = The input distance
d₂ = The output distance
The Mechanical advantage, MA = d₁/d₂ = F₂/F₁
Therefore, when the input distance is increased the input force will be reduced for a given output force