Answer:
the normal human body temperature in Celcius is 37°C, in Fahrenheit is 98.6°F, in Kelvin is 310°K
(a) What is
the potential energy: PE = -G * M * m/r
Where: M is the mass of the earth which is 5.98 * 10^24 kg.
m is the mass of the satellite.
r is the space from the center of the earth to the satellite
To conclude this distance add the radius of the earth to the
altitude. Radius of the earth is 6.38 * 10^6 meters.
r = 6.38 * 10^6 + 2.02 * 10^6 = 8.38 * 10^6
PE = 6.67 * 10^-11 * 5.98 * 10^24 * 99/8.38 * 10^6 =
4.71240095 * 10^9 J
(b) magnitude of the gravitational force exerted by the
Earth
Fg = G * M * m/r^2
Fg = 6.67 * 10^-11 * 5.98 * 10^24 * 99/(8.38 * 10^6)^2 =
562.3078873 N
(c) There are no other forces that the satellite exert on
the Earth. So therefore, it is 0.
The ratio of the kinetic energy of the block/bullet system immediately after the collision to the initial kinetic energy of the bullet is 0.78 %.
<h3>Final velocity of the block/bullet system</h3>
Apply the principle of conservation of energy to determine the final velocity of the block/bullet system.
K.E = P.E
¹/₂mv² = mgh
¹/₂v² = gh
v² = 2gh
v = √2gh
where;
- h is the maximum height reached by the system
- v is the initial velocity of the system
v = √(2 x 9.8 x 1.1)
v = 4.64 m/s
<h3>Initial velocity of the bullet</h3>
Apply the principle of conservation of linear momentum.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
where;
- u₁ is the initial velocity of the bullet
- u₂ is the initial velocity of the block
- v is the final velocity after collision
- m₁ is mass bullet
- m₂ is mass of block
(0.0075)u₁ + (0.95)(0) = 4.64(0.0075 + 0.95)
0.0075u₁ = 4.4428
u₁ = 4.4428/0.0075
u₁ = 592.37 m/s
<h3>Initial kinetic energy of the bullet</h3>
K.Ei = ¹/₂m₁u₁²
K.Ei = ¹/₂(0.0075)(592.37)²
K.Ei = 1,315.88 J
<h3>Final kinetic energy of the block/bullet system</h3>
K.Ef = ¹/₂(m₁ + m₂)v²
K.Ef = ¹/₂(0.0075 + 0.95)(4.64)²
K.Ef = 10.31 J
<h3>Ratio of final kinetic energy to initial kinetic energy</h3>
= K.Ef/K.Ei x 100%
= (10.31 / 1,315.88) x 100%
= 0.78 %
Learn more about kinetic energy here: brainly.com/question/25959744
#SPJ1
I do not know if it is correct but I think it is between B or C
Use the velocity expression for uniform acceleration and solve for t: v = v0 + at. v0 is zero since the object is at rest. 49 m/s = a(t), and solve for t. t = 49 m/s / 9.8 = 5 seconds.