The Lyman series can be expressed in the formula <span><span>1/λ</span>=<span>RH</span><span>(1−<span>1/<span>n2</span></span>) where </span><span><span>RH</span>=1.0968×<span>107</span><span>m<span>−1</span></span>=<span><span>13.6eV</span><span>hc
</span></span></span></span>Where n is a natural number greater than or equal to 2 (i.e. n = 2,3,4,...). Therefore, the lines seen in the image above are the wavelengths corresponding to n=2 on the right, to n=∞on the left (there are infinitely many spectral lines, but they become very dense as they approach to n=∞<span> (Lyman limit), so only some of the first lines and the last one appear).
The wavelengths (nm) in the Lyman series are all ultraviolet
:2 3 4 5 6 7 8 9 10 11
Wavelength (nm) 121.6 102.6 97.3 95 93.8 93.1 92.6 92.3 92.1 91.9 91.18 (Lyman limit)
In your case for the n=5 line you have to replace "n" in the above formula for 5 and you should get a value of 95 x 10^-9 m for the wavelength. then you have to use the other equation that convert wavelength to frequency. </span>
SO4 -2, or Sulfate
Hope this helps! :)
Explanation:
Atoms are the smallest unit of matter that can't be broken down chemically. Molecules are groups of two or more atoms that are chemically bonded. Ions are atoms or molecules that have gained or lost one or more of their valence electrons and therefore have a net positive or negative charge.
<span> Ag(NH3)2Cl + 3HNO3 = AgNO3 +2NH4NO3 + HCl </span>
<span>or
Ag(NH3)2Cl + HNO3 = Ag(NH3)2NO3 + HCl this the complete balanced equation
now remove spectator ions to get net ionic equation
so
</span>
<span>
2H+ + 2NO3- + [Ag(NH3)2]+ Cl- -> AgCl + 2NH4+ + 2NO3- 2NO3- 2H+ [Ag(NH3)2]+ + Cl- -> AgCl + 2NH4+
</span>hope it helps
Answer:

Explanation:
= First mass of water = 12 oz
= Second mass of water = 20 oz
= Temperature difference of the solution with respect to the first mass of water =
= Temperature difference of the solution with respect to the second mass of water = 
c = Specific heat of water
As heat gain and loss in the system is equal we have

The final temperature of the solution is
.