Answer:
22Ω
Explanation:
Given parameters:
Potential difference = 3.3V
Current = 0.15A
Unknown:
Resistance = ?
Solution:
According to ohm's law, potential difference, current and resistance are related by the expression below;
V = I R
where V is the voltage
I is the current
R is the resistance
3.3 = 0.15 x R
R =
= 22Ω
Answer:
The answer is given below.
Explanation:
We will consider the acid as HA and will set up an ICE table with the equilibrium dissociation of α.
AT pH 2.4 the initial H+ concentration will be 3.98^10-3 M
HA → H+ + A-
Initial concentration: 0.1 → 3.98 ^10-3 + 0
equilibrium concentration: 0.1(1-α) → 3.98 * 10-3 + 0.1α 0.1α
pKa of chloroacetic acid is 2.9
-log(Ka) = 2.9
Ka = 1.26 * 10-3
From the equation, Ka = [H+] * [A-] / [HA]
1.26 * 10-3 = (3.98 * 10-3 + 0.1α )* 0.1α / 0.1(1-α)
Since α<<1, we assume 1-α = 1
Solving the equation, we have: α = 0.094
Since this is the fraction of acid that has dissociated, we can say that % of base form = 100 * α= 9.4%
The answer is -3, if you are asking for that
Answer:
The correct answer is b) 2
Explanation:
When is dissolved in water, silver acetate (AgCH₃COO) is dissociated into ions according to the following equilibrium:
AgCH₃COO ⇄ Ag⁺ + CH₃COO⁻
Where Ag⁺ is a silver cation and CH₃COO⁻ is the acetate anion (an organic anion). As we can see, from one single formula unit are obtained 2 ions (1 cation and 1 anion).
Therefore, the correct option is b) - 2