1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viktor [21]
3 years ago
7

Given the units of force, write a simple equation relating a constant force Fexerted on an object, an interval of time t during

which the force is applied, andthe resulting momentum of the object,
Physics
1 answer:
sattari [20]3 years ago
3 0

newton's second law ...

F=momentum change/time

F = (Final mom'm-start mom'm)/time

Ft+start =final

Ft is impulse

You might be interested in
In a traveling or following spotlight in a musical theater production, the brilliant xenon lamp positioned
NNADVOKAT [17]
The answer is the letter a
3 0
3 years ago
Imagine you’re an engineer making a string of battery powered holiday lights. If a bulb burns out current cannot flow through th
Anit [1.1K]

Answer:

The 2 light bulbs can be connected in parallel to each other to avoid disconnection when one bulb burns out.

Explanation:

The parallel connection is required not series. A parallel connection is the connection of electronic components (e.g bulbs, LED, resistors, capacitors etc) in such a way that the same voltage is supplied across the ends of the components.  While in a series connection, the components are connected to each other end-to-end.

As regard the question, parallel connection ensures that the brightness any of the bulbs is not affected with respect to the other bulbs. And other bulbs continue to function when any burns out. The 2 light bulbs should be connected in parallel to the baterry to avoid disconnection of all the bulbs.

4 0
3 years ago
A 54 kg person stands on a uniform 20 kg, 4.1 m long ladder resting against a frictionless wall.
SVETLANKA909090 [29]

A) Force of the wall on the ladder: 186.3 N

B) Normal force of the ground on the ladder: 725.2 N

C) Minimum value of the coefficient of friction: 0.257

D) Minimum absolute value of the coefficient of friction: 0.332

Explanation:

a)

The free-body diagram of the problem is in attachment (please rotate the picture 90 degrees clockwise). We have the following forces:

W=mg: weight of the ladder, with m = 20 kg (mass) and g=9.8 m/s^2 (acceleration of gravity)

W_M=Mg: weight of the person, with M = 54 kg (mass)

N_1: normal reaction exerted by the wall on the ladder

N_2: normal reaction exerted by the floor on the ladder

F_f = \mu N_2: force of friction between the floor and the ladder, with \mu (coefficient of friction)

Also we have:

L = 4.1 m (length of the ladder)

d = 3.0 m (distance of the man from point A)

Taking the equilibrium of moments about point A:

W\frac{L}{2}sin 21^{\circ}+W_M dsin 21^{\circ} = N_1 Lsin 69^{\circ}

where

Wsin 21^{\circ} is the component of the weight of the ladder perpendicular to the ladder

W_M sin 21^{\circ} is the component of the weight of the man perpendicular to the ladder

N_1 sin 69^{\circ} is the component of the normal  force perpendicular to the ladder

And solving for N_1, we find the force exerted by the wall on the ladder:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{mg}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+Mg\frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{(20)(9.8)}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+(54)(9.8)\frac{3.0}{4.1}\frac{sin 21^{\circ}}{sin 69^{\circ}}=186.3 N

B)

Here we want to find the magnitude of the normal force of the ground on the ladder, therefore the magnitude of N_2.

We can do it by writing the equation of equilibrium of the forces along the vertical direction: in fact, since the ladder is in equilibrium the sum of all the forces acting in the vertical direction must be zero.

Therefore, we have:

\sum F_y = 0\\N_2 - W - W_M =0

And substituting and solving for N2, we find:

N_2 = W+W_M = mg+Mg=(20)(9.8)+(54)(9.8)=725.2 N

C)

Here we have to find the minimum value of the coefficient of friction so that the ladder does not slip.

The ladder does not slip if there is equilibrium in the horizontal direction also: that means, if the sum of the forces acting in the horizontal direction is zero.

Therefore, we can write:

\sum F_x = 0\\F_f - N_1 = 0

And re-writing the equation,

\mu N_2 -N_1 = 0\\\mu = \frac{N_1}{N_2}=\frac{186.3}{725.2}=0.257

So, the minimum value of the coefficient of friction is 0.257.

D)

Here we want to find the minimum coefficient of friction so the ladder does not slip for any location of the person on the ladder.

From part C), we saw that the coefficient of friction can be written as

\mu = \frac{N_1}{N_2}

This ratio is maximum when N1 is maximum. From part A), we see that the expression for N1 was

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}

We see that this quantity is maximum when d is maximum, so when

d = L

Which corresponds to the case in which the man stands at point B, causing the maximum torque about point A. In this case, the value of N1 is:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{L}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{W}{2}+W_M)

And substituting, we get

N_1=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{(20)(9.8)}{2}+(54)(9.8))=240.8 N

And therefore, the minimum coefficient of friction in order for the ladder not to slip is

\mu=\frac{N_1}{N_2}=\frac{240.8}{725.2}=0.332

Learn more about torques and equilibrium:

brainly.com/question/5352966

#LearnwithBrainly

7 0
3 years ago
What momentum does a 70 kg person running 10m/s (a fast sprint) have ?
gogolik [260]

Momentum = (mass) x (speed)

Momentum = (70 kg) x (10 m/s)

<em>Momentum = 700 kg-m/s</em>

8 0
3 years ago
A 12.0-g plastic ball is dropped from a height of 2.50 m. Just as it strikes the floor, it is moving at a speed of 3.20 m/s. How
nalin [4]

Answer:

0·233 J

Explanation:

Given

Mass of the ball = 0·012 kg

Initially the ball is at a height of 2·5 m

As initially the ball is dropped, it's initial velocity will be equal to 0

Therefore initially it has zero kinetic energy and has only potential energy

∴ Initially total mechanical energy of the ball = potential energy of the ball

Initial potential energy of the ball = m × g × h

where

m is the mass of the ball

g is the acceleration due to gravity

h is the height of the ball

∴ Potential energy = 0·012 × 9·8 × 2·5 = 0·294 J

Velocity of the ball after striking the floor = 3·2 m/s

After striking the floor, the total mechanical energy = kinetic energy just after striking the floor

Kinetic energy = 0·5 × m × v²

where m is the mass of the ball

v is the velocity of the ball

∴ Kinetic energy of the ball = 0·5 × 0·012 × 3·2² = 0·061 J

Mechanical energy that is lost = 0·294 - 0·061 = 0·233 J

∴ Mechanical energy that the ball lost during its fall = 0·233 J

6 0
3 years ago
Other questions:
  • Can someone please explain how to do these please​
    11·1 answer
  • As light from air to water to glass, it will refract. The best explanation for this would be
    5·2 answers
  • A proton moves along the x-axis in the laboratory with velocity uy = 0.6c. An observer moves with a velocity of v=0.8c along the
    13·1 answer
  • If you increase the frequency of a sound wave four times what will happen to its speed
    13·2 answers
  • 4. Design an aerated grit chamber installation (2 tanks in parallel) for an average flowrate of 0.3 m3/s and a peak flowrate of
    12·1 answer
  • Suppose an object is moving in a straight line at 50 mi/hr. According to Newton's first law of motion, the object will:
    13·1 answer
  • Swings are usually made out of materials that do not conduct heat easily, so that children will not burn themselves as they play
    6·1 answer
  • HEELLLPPPPP !
    5·1 answer
  • Plz help, and show work
    6·1 answer
  • A bridge that was 5m long has been washed out by a heavy rain. The road on the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!