There are two kinds of mixtures
a) homogeneous : the boundary of the two components is not physically distinct
b) heterogeneous:the boundary of the two components is physically distinct
the following separation techniques are common for mixtures
1) filtration: if the two components are forming heterogeneous mixture we can separate them by filtration.
2) boiling: if boiling point of one of the components is less than other
3) magnetic separation: if one of the component is magnetic
4)sieve method: for solid components with difference in size of particles
5) hand picking
Thus the correct match will be as shown in the figure
Answer:
See explanation
Explanation:
We know that the process of the oxidation of SO2 to SO3 is catalysed by NO2 gas. It occurs in two stages and i will show the balanced reaction equation of the both stages below;
Step 1
2NO2(g) + 2SO2(g) ------> 2NO(g) + 2SO3(g)
Step 2
2NO(g) + O2(g) -------> 2NO2(g)
So, the overall reaction equation is;
2SO2(g) + O2(g) ------> 2SO3(g)
Answer:
b.Beta
Explanation:
mass number remains constant while atomic number has been increased by 1 unit . beta is electron like element where its mass number is 0 and atomic number is -1.
The large piece of jewelry that has a mass of 132.6 g and when is submerged in a graduated cylinder that initially contains 48.6 ml water and the volume increases to 61.2 ml once the piece of jewelry is submerged, has a density of: 10.523 g/ml
To solve this problem the formulas and the procedures that we have to use are:
Where:
- d= density
- m= mass
- v= volume
- v(f) = final volume
- v(i) = initial volume
Information about the problem:
- m = 132.6 g
- v(i) = 48.6 ml
- v(f) = 61.2 ml
- v = ?
- d =?
Applying the volume formula we get:
v = v(f)-v(i)
v = 61.2 ml - 48.6 ml
v = 12.6 ml
Applying the density formula we get:
d = m/v
d = 132.6 g/12.6 ml
d = 10.523 g/ml
<h3>What is density?</h3>
It is a physical quantity that expresses the ratio of the body mass to the volume it occupies.
Learn more about density in: brainly.com/question/1354972
#SPJ4