True because it has more power than coal burning
Ni(OH)₂ ⇄ Ni⁺² + 2 OH⁻
Ksp = [Ni⁺²][OH⁻]² = S (2S)² = 4S³
where S is molar solubility.
at pH = 10
[H⁺] = 10⁻¹⁰
[H⁺][OH⁻] = 10⁻¹⁴
so [OH⁻] = 10⁻⁴ M
Ksp = S [10⁻⁴ + 2S]²
Ksp is very small so the molar solubility of OH⁻ will be very small
so (10⁻⁴ + 2S) is about 10⁻⁴
so Ksp = S x 10⁻⁸
S =

= 6 x 10⁻⁸ M
Answer:
14.2L at STP
Explanation:
Based on the problem, 2 moles of NH3 produce 6 moles of HF. To solve this question we have to convert the mass of NH3 to moles. With the chemical equation find the moles of HF and using PV = nRT find the liters of HF:
<em>Moles NH3 -Molar mass: 17.031g/mol-</em>
3.6g NH3 * (1mol / 17.031g) = 0.211 moles NH3
<em>Moles HF:</em>
0.211 moles NH3 * (6mol HF / 2mol NH3) = 0.634 moles HF
<em>Volume HF</em>
PV = nRT; V = nRT/P
<em>Where V is volume in liters, n are moles of the gas = 0.634 moles, R is gas constant = 0.082atmL/molK, T is absolute temperature = 273.15K at STP and P is pressure = 1atm at STP.</em>
Replacing:
V = 0.634moles*0.082atmL/molK*273.15K / 1atm
V = 14.2L at STP
Answer:
Components of crude oil can be separated through a process called <u><em>fractional distillation</em></u>.
Explanation:
Fractional distillation can be described as a method of distillation in which a liquid mixture is separated based on the different boiling points of the components present in the mixture. The components of crude oil have different boiling temperatures hence, they can be separated by the process of fractional distillation.
The fractionating column has high temperatures at the bottom so components with high temperatures are separated at the bottom. The upper columns have lower temperatures. Components with lower boiling temperatures get separated at the upper columns.
Explanation:
According to the ideal gas equation, PV = nRT.
where, P = pressure, V = volume
n = no. of moles, R = gas constant
T = temperature
Also, density is equal to mass divided by volume. And, no. of moles equals mass divided by molar mass.
Therefore, then formula for ideal gas could also be as follows.
P = 
or, P = 
Since, density is given as 0.789 g/ml which is also equal to 789 g/L (as 1000 mL = 1 L). Hence, putting the given values into the above formula as follows.
P = 
= 
= 525 atm
As two-liter soft drink bottle can withstand a pressure of 5 atm and the value of calculated pressure is 525 atm which is much greater than 5 atm.
Therefore, the soft drink bottle will obviously explode.