<span>Since chlorine favours a (-1) oxidation state, it forms an ionic bond with group one metals with the formula XCl. All group one metals react vigorously with chlorine gas; and each reaction gets more violent as you move down Group 1 and produces a white crystalline salt. The reaction with chlorine is as follows 2X + Cl2 which gives 2XCl. Where X is an Alkali metal.</span>
Answer: for an object or gas or liquid to float in another there must be a difference in density
Explanation:
Helium has a density of 0.18 kg/m³ and air has a density of 1.29 kg/m^³. If a balloon is filled with helium it will float in air due to density differences
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the fluid that the body displaces
Answer:
but why are you asking about water
Explanation:
when combustion is done with coal hydrocarbons are released in air this pollute the air
The heat from the hotter water will go into the colder water untl equilibrium is reached. Equilibrium is same temperature!
Now, the heat is proportional to the mass, the specific heat and the temperature difference. The specific heat does not matter since all is water, it will cancel out:
m_1 * c_H20 * ( T_final - T_1 ) = -m_2 * c_H20 * ( T_final - T_2)
Notice the minus, because one wins the heat of the one who loses it. In this way both sides have the same sign:
m_1*(T_final - T_1)=-m_2*(T_final-T_2), or after some simple algebra:
T_final = (m_1 * T_1 + m_2 * T_2 )/(m_1+m_2),
which looks like an arithmetic mean, and one could have gone for this, but the above shows all the work. Notice that if T_1=T_2, T_final=T_1 always, which makes sense.
Now you can convert volume to mass with the density, but since mass = density*volume and it is all water, the density will cancel out and you can work with volumes. If you prefer just say: 120 ml->120 g , etc ...
T_final = (120*95+320*25)/(320+120)=44.0909 degrees Celsius, or ~ 44.09 degrees with two decimal precision as your statement (beware of precision always!).