Answer:
Decomposition Reaction
Explanation:
If you are referring to what type of reaction that occurred then the answer would be decomposition reaction.
This is a chemical reaction where one reactant is broken down into two or more products.
REACTANT → PRODUCT
AB → A + B
The products can be two or more elements or two or more compounds, depending on what was decomposed.
Answer:
9.0 moles of CaO
Explanation:
We have the reaction equation as follows;
Fe2O3 + Ca3(PO4)2 -------> 2FePO4 + 3CaO
Now we know from the equation that;
1 mole of iron III oxide yields 3 moles of CaO
Therefore;
3 moles of iron III oxide yields 3 * 3/1
= 9.0 moles of CaO
It would take 147 hours for 320 g of the sample to decay to 2.5 grams from the information provided.
Radioactivity refers to the decay of a nucleus leading to the spontaneous emission of radiation. The half life of a radioactive nucleus refers to the time required for the nucleus to decay to half of its initial amount.
Looking at the table, we can see that the initial mass of radioactive material present is 186 grams, within 21 hours, the radioactive substance decayed to half of its initial mass (93 g). Hence, the half life is 21 hours.
Using the formula;
k = 0.693/t1/2
k = 0.693/21 hours = 0.033 hr-1
Using;
N=Noe^-kt
N = mass of radioactive sample at time t
No = mass of radioactive sample initially present
k = decay constant
t = time taken
Substituting values;
2.5/320= e^- 0.033 t
0.0078 = e^- 0.033 t
ln (0.0078) = 0.033 t
t = ln (0.0078)/-0.033
t = 147 hours
Learn more: brainly.com/question/6111443
Conditions:
Low pressure and low temperature
Low pressure and high temperature
High pressure and low temperature
High pressure and high temperature
Answer:
18.76atm
Explanation:
Using the formula V1P1/T1 = V2P2/T2, from combined gas law. Volume is constant since we have not been given. Therefore the formula comes to be; P1/T1 = P2/T1
To get P2 = T2(P1/T1)
Where P2 is final pressure
P2 = 239K ( 23atm/293K)
=18.76atm