Answer:
50m/s²
Explanation:
cross muliplyy write down the values acceleration and force
So this is dealing with the conservation of energy. So you set kinetic energy equal to potential energy, so it looks like this:
1/2mv^2=mgh. The m's cancel out, so it is 1/2v^2=gh.
To find out what the height h is, divide g on both sides, so...
h=0.5v^2/g. v=22m/s, g=9.81m/s^2, so h=(0.5)(22^2)/(9.81)=24.67m
I believe the answer is the mass of the object and the speed at which it is moving.
Explanation : Explain each characteristic of sound waves.
Intensity : the intensity of the sound wave is understand as the power carry by sound wave per unit area in the direction perpendicular to that area.
Loudness : loudness is the quality of the loud and soft of the sound wave.
Frequency : Human normal hear sound frequency between 20 Hz to kHz.
Pitch : Pitch is the quality of low and high of sound wave . pitch relates to the frequency of the slowest vibration in the sound wave for simple sound.
The equation
(option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:


Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
: is the initial velocity of the<em> lab cart </em>
: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
: is the final velocity of the<em> lab cart </em>
: is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

Therefore, the equation
represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!