Answer:
A longitudinal section
Explanation:
A longitudinal section is a section drawn along the length of an object, as opposed to a cross section, which is drawn across the width or diameter of an object.
Answer:
0.8 kilograms of fuel are consumed each second.
Explanation:
As turbines are steady-state devices, the thermal efficiency of a turbine is equal to the percentage of the ratio of the output power to fluid power, that is:

The fluid power is:



Which means that gas turbine consumes 40 megajoules of fluid energy each second, which is heated and pressurized with help of the fuel, whose amount of consumption per second is:


0.8 kilograms of fuel are consumed each second.
Answer:
Tso = 28.15°C
Explanation:
given data
t2 = 21 mm
ki = 0.026 W/m K
t1 = 9 mm
kp = 180 W/m K
length of the roof is L = 13 m
net solar radiation into the roof = 107 W/m²
temperature of the inner surface Ts,i = -4°C
air temperature is T[infinity] = 29°C
convective heat transfer coefficient h = 47 W/m² K
solution
As when energy on the outer surface at roof of a refrigerated truck that is balance as
Q =
.....................1
Q =
.....................2
now we compare both equation 1 and 2 and put here value
solve it and we get
Tso = 28.153113
so Tso = 28.15°C
Answer:
It really depends on what you want it to do. I would make one that does chores around the house so I don't have to.
Explanation:
Answer:
A) 209.12 GPa
B) 105.41 GPa
Explanation:
We are given;
Modulus of elasticity of the metal; E_m = 67 GPa
Modulus of elasticity of the oxide; E_f = 390 GPa
Composition of oxide particles; V_f = 44% = 0.44
A) Formula for upper bound modulus of elasticity is given as;
E = E_m(1 - V_f) + (E_f × V_f)
Plugging in the relevant values gives;
E = (67(1 - 0.44)) + (390 × 0.44)
E = 209.12 GPa
B) Formula for upper bound modulus of elasticity is given as;
E = 1/[(V_f/E_f) + (1 - V_f)/E_m]
Plugging in the relevant values;
E = 1/((0.44/390) + ((1 - 0.44)/67))
E = 105.41 GPa