Answer:
Explanation:
Fist you need to identify where the leak is coming from. You can do this by either listening for the leak or spraying soapy water on the exhaust to look for air bubbles coming out of the exhaust. Depending on the spot of the leak there are many ways you can fix this leak.
1. Exhaust clamp
2. Exhaust putty
3. Exhaust tape
4. New exhaust
Exhaust clamp is best used for holes on straight pipes.
Putty is best used on welds or small holes like on exhaust manifolds or welds connecting various pieces like catalytic converters, mufflers, or resonators.
Tape will work best on straight pipes with holes.
New exhaust is for when the thig is beyond repair, like rust.
Now good luck because working on exhausts is a pain.
Answer:
Combination circuit; The basic strategy for the analysis of combination circuits involves using the meaning of equivalent resistance for parallel branches to transform the combination circuit into a series circuit.
Example:
The use of both series and parallel connections within the same circuit. In this case, light bulbs A and B are connected by parallel connections and light bulbs C and D are connected by series connections. This is an example of a combination circuit.
Answer:
LOTS
Explanation:
Catapults, Towers, and Trebuchets were all used by Saladin to capture Jerusalem in 1187
Answer:
a) m=336.18N
b) Vn=16.67m/kmol
Vm=0.1459m^3/kg
Explanation:
To calculate the mass of the octane(m):
Number of mole of octane (n) =0.3kmol(given)
Molarmass of octane (M) =114.23kg/kmol
m=n*M
m=(0.3kmol)*(114.23kg/kmol)
m=34.269kg
To calculate for the weight of octane(W):
W=g*m
W=(9.81m/s^2)*(34.269kg)
W=336.18N
b) For specific volumes of Vn and Vm:
Given volume of octane (V) =5m^3
Vm=V/m
Vm=5m^3/34.269kg
Vm=0.1459m^3/kg
And Vn will be :
Vn=V/m=5m^3/0.3kmol
Vn=16.67m/Kmol
Therefore, the answers are:
a) m=336.18N
b) Vn=16.67m/kmol
Vm=0.1459m^3/kg
Answer:
0.740833917 ton/hr
Explanation:
Given:
Cooling load, 8890.007 Btu/hr = 2.605 kW
Room size = 180
According to the thumb rule
1 ton of refrigerant = 12000Btu
Hence for 8890.007 Btu/hr,
the mass flow rate of the refrigerant is =8890.007 / 12000
= 0.740833917 ton per hr
Hence, mass flow rate is 0.740833917 ton/hr