1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lukranit [14]
2 years ago
10

63.625 rounded to the nearest tenth

Mathematics
2 answers:
Ket [755]2 years ago
7 0

Answer:

63.6

Step-by-step explanation:

63.625

63.6

Tamiku [17]2 years ago
5 0

Answer:

63.6

Step-by-step explanation:

The tenth's place is one after the decimal point, and since 2 is closer to zero than ten, the 6 stays the same, making the answer 63.6.

Hopefully this helps- let me know if you have any questions!

You might be interested in
Exercise 3.9.101: Find a particular solution to x 0 = 5x + 4y+ t, y 0 = x + 8y−t, a) using integrating factor method, b) using e
enot [183]

In matrix form, the ODE is given by

\underbrace{\begin{bmatrix}x'\\y'\end{bmatrix}}_{\vec x'}=\underbrace{\begin{bmatrix}5&4\\1&8\end{bmatrix}}_A\underbrace{\begin{bmatrix}x\\y\end{bmatrix}}_{\vec x}+t\underbrace{\begin{bmatrix}1\\-1\end{bmatrix}}_{\vec f}

a. Move A\vec x to the left side and multiply both sides by the integrating factor, the matrix exponential of -A, e^{-At}:

e^{-At}\vec x'-Ae^{-At}\vec x=te^{-At}\vec f

Condense the left side as the derivative of a product:

\left(e^{-At}\vec x\right)=te^{-At}\vec f

Integrate both sides and multipy by e^{At} to solve for \vec x:

e^{-At}\vec x=\displaystyle\left(\int te^{-At}\,\mathrm dt\right)\vec f\implies\vec x=\displaystyle e^{At}\left(\int te^{-At}\,\mathrm dt\right)\vec f

Finding e^{\pm At} requires that we diagonalize A.

A has eigenvalues 4 and 9, with corresponding eigenvectors \begin{bmatrix}-4&1\end{bmatrix}^\top and \begin{bmatrix}1&1\end{bmatrix}^\top (explanation for this in part (b)), so we have

A=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4&0\\0&9\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4^n&0\\0&9^n\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\dfrac15\begin{bmatrix}4^{n+1}+9^n&4\cdot9^n-4^{n+1}\\9^n-4^n&4^n+4\cdot9^n\end{bmatrix}

\implies e^{\pm At}=\dfrac15\begin{bmatrix}4e^{\pm4t}+e^{\pm9t}&4e^{\pm9t}-4e^{\pm4t}\\e^{\pm9t}-e^{\pm4t}&e^{\pm4t}+4e^{\pm9t}\end{bmatrix}

\implies\vec x=\dfrac15e^{At}\begin{bmatrix}C_1\\C_2\end{bmatrix}-\dfrac1{216}\begin{bmatrix}72t+20\\-36t-7\end{bmatrix}

b. Find the eigenvalues of A:

\det(A-\lambda I_2)=\begin{vmatrix}5-\lambda&4\\1&8-\lambda\end{vmatrix}=\lambda^2-13\lambda+36=0

\implies(\lambda-4)(\lambda-9)=0\implies\lambda_1=4,\lambda_2=9

Let \vec\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top and \vec\theta=\begin{bmatrix}\theta_1&\theta_2\end{bmatrix}^\top be the corresponding eigenvectors.

For \lambda_1=4, we have

\begin{bmatrix}1&4\\1&4\end{bmatrix}\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

which means we can pick \eta_1=-4 and \eta_2=1.

For \lambda_2=9, we have

\begin{bmatrix}-4&4\\1&-1\end{bmatrix}\begin{bmatrix}\theta_1\\\theta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

so we pick \theta_1=\theta_2=1.

Then the characteristic solution to the system is

\vec x_c=C_1e^{\lambda_1t}\vec\eta+C_2e^{\lambda_2t}\vec\theta

\vec x_c=C_1e^{4t}\begin{bmatrix}-4\\1\end{bmatrix}+C_2e^{9t}\begin{bmatrix}1\\1\end{bmatrix}

c. Now we find the particular solution with undetermined coefficients.

The nonhomogeneous part of the ODE is a linear function, so we can start with assuming a particular solution of the form

\vec x_p=\vec at+\vec b\implies\vec x_p'=\vec a

Substituting these into the system gives

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\left(\begin{bmatrix}a_1\\a_2\end{bmatrix}t+\begin{bmatrix}b_1\\b_2\end{bmatrix}\right)+\begin{bmatrix}1\\-1\end{bmatrix}t

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\begin{bmatrix}a_1t+b_1\\a_2t+b_2\end{bmatrix}+\begin{bmatrix}t\\-t\end{bmatrix}

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}(5a_1+4a_2+1)t+(5b_1+4b_2)\\(a_1+8a_2-1)t+(b_1+8b_2)\end{bmatrix}

\implies\begin{cases}5a_1+4a_2=-1\\5b_1+4b_2=a_1\\a_1+8a_2=1\\b_1+8b_2=a_2\end{cases}\implies a_1=-\dfrac13,a_2=\dfrac16,b_1=-\dfrac5{54},b_2=\dfrac7{216}

Put everything together to get a solution

\vec x=\vec x_c+\vec x_p

that should match the solution in part (a).

8 0
3 years ago
Melcher used 24% if the memory card on his digital camera while taking pictures at a family reunion. If melcher took 96 pictures
Leya [2.2K]
24/100 X = 96

24x = 9600

X= 9600/24 = 400 pics is the full memory
3 0
3 years ago
Helpppppppppp mathhhhhhhhhhhhhhhh
zhenek [66]
1- ASA for all triangle mentioned. The have one side adjacent to 2 angles

4 0
3 years ago
Read 2 more answers
What is the mode of these numbers: 10, 13, 800, 24 and 13
OverLord2011 [107]
A mode is the number that appears the most in a set of numbers. (I'm going to put the numbers in order before I solve this) 

10, 13, 13, 24, 800

The answer is 13, because it appears more than any of the other numbers. :)

Hopefully this helps! If you have any more questions or don't understand, feel free to DM me, and I'll get back to you ASAP! :)
3 0
3 years ago
Read 2 more answers
PLEASE HURRY WILL GIVE YOU MY ACCOUNT AND BRAINLIEST IF YOU ANSWER CORRECTLY
marishachu [46]

Answer:

A, D, E

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • PLEASE HELP ITS DUE TODAY!!! What is the product of 1/2x-1/4 & 5x^2-2x+6? Write your answer in standard form. (A) show your
    11·1 answer
  • WHO IS BORED quarantine got me a lot of homework and a crazy mom
    9·2 answers
  • The sum of three numbers is 1. If the second number is subtracted from the sum of the first and third numbers, the result is -5.
    6·1 answer
  • Describe how to solve the following equation. Explain why you do each step. n/3=15
    11·2 answers
  • Need help please ASAP
    14·1 answer
  • 160+3x=195-2x what is the answer
    14·2 answers
  • Write an expression so that the product of a whole number and a decimal is.0.28
    9·1 answer
  • Someone help me using the diagram below!
    7·1 answer
  • I will mark brainest if it is correct<br> 1. 4x + 3 = x + 18<br> x=
    14·2 answers
  • 7.849 make the 8 worth 10 times as much
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!