Answer:
23.4 m/s
Explanation:
f = actual frequency of the wave = 6.2 x 10⁹ Hz
= frequency observed as the ball approach the radar
= frequency observed as the ball recede away from the radar
V = speed of light
= speed of ball
B = beat frequency = 969 Hz
frequency observed as the ball approach the radar is given as
eq-1
frequency observed as the ball recede the radar is given as
eq-2
Beat frequency is given as

Using eq-2 and eq-1

inserting the values

= 23.4 m/s
Mass divided by volume
Piensa así M
--- = D
V
Como un corazón
Masa división por volumen igual a densidad
Answer:
The speed of light measured in any frame is c = 3.00E8 m/s.
This is one of Einstein's postulates of special relativity.
Well you of course have different kinetic energies with the two speeds.
Kinetic energy = (1/2)*mass*velocity^2
The vehicle's mass is the same in both cases, so we can ignore that as well as 1/2 since it's a constant.
So we have (30)^2 vs (60^2)
which is 900 vs 3600
So having 60 mph compared to 30 mph is 4 times the kinetic energy.
882 divided by 9.81 (this is acceleration due to gravity) it equals 89.91