Answer:
- <u>Decreasing the temperature of the system will shift the reaction rightward.</u>
Explanation:
The complete question is:
Given the equation representing a system at equilibrium:
- N₂(g) + 3H₂(g) ⇌ 2NH₃(g) + energy
what changes occur when the temperature of this system is decreased?
<h2>Solution</h2>
Modifying the temperature of a system in equilibrium changes the equilibrium constant and the equilibrium position (concentrations) of the system.
When the temperature is decreased, following LeChatelier's principle that the system will react in a way that seeks to counteract the disturbance, the reaction will shift toward the reaction that produces more heat energy to compensate the temperature decrease.
Thus, decreasing the temperature of the system will favor the forward reaction, more N₂(g) and H₂(g) will be consumed and more NH₃(g) and energy will be produced. Hence, the equilibrium will shift rightward.
A substance which allows energy (heat or electricity) to pass through it is known as a conductor.
These substances usually have free electrons which allows the charges to flow easily in the substance, thus, transferring energy.
Other substances which do not have free electrons and do not allow energy to pass through them are known as insulators.
Explanation:
see the pic for the answer
Water, because electrolysis is using electricity to break the bond of water to release 2 Hydrogens and the 1 Oxygen.
Ionic compounds are between metals and non metals, otherwise if it’s a nonmetal with a nonmetal it’s molecular