Answer:
34.8 and 55.2º
Explanation:
This is a projectile launching exercise, as we are told that the range of the arrow must be equal to its range and = 31 m let's use the equation
The scope equation is
R = v₀² sin 2θ /g
sin 2 θ = R g / v₀²
sin 2 θ = 31 9.8 / 18²
2 θ = sin⁻¹ 0.93765
θ = 34.8º
At the launch of projectiles we have two complementary angles with the same range in this case 34.8 and (90-34.8) = 55.2º
Answer:
1.492*10^14 electrons
Explanation:
Since we know the mass of each balloon and the acceleration, let’s use the following equation to determine the total force of attraction for each balloon.
F = m * a = 0.012 * 1.9 = 0.0228 N
Gravitational forces are negligible
Charge force = 9 * 10^9 * q * q ÷ 225
= 9 * 10^9 * q^2 ÷ 225 = 0.0228
q^2 = 5.13 ÷ 9 * 10^9
q = 2.387 *10^-5
This is approximately 2.387 *10^-5 coulomb of charge. The charge of one electron is 1.6 * 10^-19 C
To determine the number of electrons, divide the charge by this number.
N =2.387 *10^-5 ÷ 1.6 * 10^-19 = 1.492*10^14 electrons
The light from the sun is reflected by the moon, we see the part of the moon that the sun shines on.The change in the phases are created from the rotation of the moon around earth.We see a full moon when the sun is opposite of the moon. The side the sun shines on the moon is what we see.