Answer
given,
mass of satellite = 545 Kg
R = 6.4 x 10⁶ m
H = 2 x 6.4 x 10⁶ m
Mass of earth = 5.972 x 10²⁴ Kg
height above earth is equal to earth's mean radius
a) satellite's orbital velocity
centripetal force acting on satellite = 
gravitational force = 
equating both the above equation



v = 5578.5 m/s
b) 


T = 14416.92 s

T = 4 hr
c) gravitational force acting


F = 5202 N
Explanation:
Análisis estadístico de resultados de ensayos de pavimentos asfálticos según la ... T38 Caracterizacin dinámica de suelos granulares ... Se retira y se da vuelta la probeta
Answer:
speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s
Explanation:
Given:
mass of truck M = 1370 kg
speed of truck = 12.0 m/s
mass of car m = 593 kg
collision is elastic therefore,
Applying law of momentum conservation we have
momentum before collision = momentum after collision
1370×12 + 0( initially car is at rest) = 1370×v1+ 593×v2 ....(i)
Also for a collision to be elastic,
velocity of approach = velocity of separation
12 -0 = v2-v1 ....(ii)
using (i) and (ii) we have
So speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s
Answer:
Explanation:
(b) The initial velocity is added to that due to acceleration by gravity. The velocity is increased linearly by gravity at the rate of 9.8 m/s². The average velocity of the pebble will be its velocity halfway through the 2-second time period.* That is, it will be ...
4 m/s + (9.8 m/s²)(2 s)/2 = 13.8 m/s . . . . average velocity
__
(a) The distance covered in 2 seconds at an average velocity of 13.8 m/s is ...
d = vt
d = (13.8 m/s)(2 s) = 27.6 m
The water is about 27.6 m below ground.
_____
* We have chosen to make use of the fact that the velocity curve is linear, so the average velocity is half the sum of initial and final velocities:
vAvg = (vInit + vFinal)/2 = (vInit + (vInit +at))/2 = vInit +at/2
__
If you work this in a straightforward way, you would find distance as the integral of velocity, then find average velocity from the distance and time.
