1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lukranit [14]
3 years ago
7

Luster, hardness, color, size, and temperature are all examples of

Physics
1 answer:
sergij07 [2.7K]3 years ago
5 0

Answer:

i believe it's D

Explanation:

You might be interested in
The ability to react with air is a
seraphim [82]
I already said it but its reactivity
7 0
3 years ago
Read 2 more answers
A sprinter starts from rest and reaches a speed of 15 m/s in 4.25 s. Find his acceleration
kakasveta [241]

Answer:

a=3.53 m/s^2

Explanation:

Vo=0 m/s (because he is not moving at the start)

V1=15 m/s

t= 4.25 s

a = (V1-Vo) / t = 15/4.25 = 3.53 m/s^2

5 0
3 years ago
A 1 036-kg satellite orbits the Earth at a constant altitude of 98-km. (a) How much energy must be added to the system to move t
Veronika [31]

Answer:

a) The Energy added should be 484.438 MJ

b) The  Kinetic Energy change is -484.438 MJ

c) The Potential Energy change is 968.907 MJ

Explanation:

Let 'm' be the mass of the satellite , 'M'(6×10^{24} be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×10^{-11} N/m) be the universal constant of gravitation.

We know that the orbital velocity(v) for a satellite -

v=\sqrt{\frac{Gmm}{R+h} }         [(R+h) is the distance of the satellite   from the center of the earth ]

Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)

For initial conditions ,

h = h_{i} = 98 km = 98000 m

∴Initial Energy (E_{i})  = \frac{1}{2}mv^{2} + \frac{-GMm}{(R+h_{i} )}

Substituting v=\sqrt{\frac{GMm}{R+h_{i} } } in the above equation and simplifying we get,

E_{i} = \frac{-GMm}{2(R+h_{i}) }

Similarly for final condition,

h=h_{f} = 198km = 198000 m

∴Final Energy(E_{f}) = \frac{-GMm}{2(R+h_{f}) }

a) The energy that should be added should be the difference in the energy of initial and final states -

∴ ΔE = E_{f} - E_{i}

        = \frac{GMm}{2}(\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} })

Substituting ,

M = 6 × 10^{24} kg

m = 1036 kg

G = 6.67 × 10^{-11}

R = 6400000 m

h_{i} = 98000 m

h_{f} = 198000 m

We get ,

ΔE = 484.438 MJ

b) Change in Kinetic Energy (ΔKE) = \frac{1}{2}m[v_{f} ^{2} - v_{i} ^{2}]

                                                          = \frac{GMm}{2}[\frac{1} {R+h_{f} } - \frac{1} {R+h_{i} }]

                                                          = -ΔE                                                            

                                                          = - 484.438 MJ

c)  Change in Potential Energy (ΔPE) = GMm[\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} }]

                                                             = 2ΔE

                                                             = 968.907 MJ

3 0
3 years ago
On an ice skating rink, a girl of mass 50 kg stands stationary, face to face with a boy of mass 80 kg. The children push off of
sasho [114]

The velocity of the girl is  -4.8 m/s.

Using the principle of conservation of linear momentum, The total momentum of  bodies before and after collision is constant. Since the two objects are stationary, the initial momentum of each body is zero.

Thus;

0 = (80 × 3) + (50 × v)

0 = 240 + 50 v

-240 = 50 v

v = -240/50

v = -4.8 m/s

Note that the negative sign shows that the velocity of the girl is in opposite direction that that of the girl.

Learn more about momentum: brainly.com/question/904448

5 0
3 years ago
engineers are using computer models to study train collisions design safer train cars. They start by modeling an elastic collisi
Archy [21]

Answer:

The final velocity of the second car is 57 m/s south.

Explanation:

This is an elastic collision between two train cars. In this case, the total kinetic energy between the two bodies will remain the same.

The formula to apply is :

m_1v_1i +m_2v_2i=m_1v_1f+m_2v_2f

where ;

m_1=mass of object 1\\v_1i=initial  velocity object1\\m_2=mass of object2\\v_2i=initial velocity object 2\\v_1f=final velocity object 1\\v_2f=final velocity object 2

Given in the question that;

m_1=14650kg\\v_1i=18m/s\\m_2=3825kg\\v_2i=11m/s\\v_1f=6m/s\\v_2f=?

Apply the formula as;

m_1v_1i +m_2v_2i=m_1v_1f+m_2v_2f

{14650*18}+{3825*11} = {14650 *6} + {3825 * v₂f}

263700+42075=87900 + 3825v₂f

305775 =87900 + 3825v₂f

305775-87900 = 3825v₂f

217875=3825v₂f

217875/3825 =v₂f

56.96 = v₂f

<u>57 m/s = v₂f { nearest whole number}</u>

4 0
2 years ago
Read 2 more answers
Other questions:
  • A cyclist rides in a circle with speed 8.1 m/s. What is his centripetal acceleration if the circle has a radius of 27 m? A. 3.3
    9·1 answer
  • Do
    7·1 answer
  • An electron with a charge of -1.6 × 10-19 coulombs experiences a field of 1.4 × 105 newtons/coulomb. What is the magnitude of th
    12·2 answers
  • Which is a device made from a coil of wire that carries a current and produces a magnetic field?
    8·2 answers
  • Particles q1, 92, and q3 are in a straight line.
    13·1 answer
  • If the mirror reflection coefficients for a laser resonator of length 5 m are 98.5% and 60%, and there are no losses, determine
    6·2 answers
  • Biodiversity affects the sustainability of an ecosystem by —
    8·2 answers
  • 3. The atmospheres of Mars and Venus are mostly carbon dioxide. Earth'satmosphere contains only a fraction of a percent of carbo
    12·1 answer
  • A satellite orbits the Earth (mass = 5.98 x 1024 kg) once every = 43200 s. At what radius does the satellite orbit?
    10·1 answer
  • Which range is the approximate audible range for humans?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!