Answer:
0.955286 j
Explanation:
A 500.0 kg module is attached to a 440.0 kg shuttle craft, which moves at 1050. m/s relative to the stationary main spaceship. Then a small explosion sends the module backward with speed 100.0 m/s relative to the new speed of the shuttle craft. As measured by someone on the main spaceship, by what fraction did the kinetic energy of the module and shuttle craft, Ki, increase because of the explosion?
M=500 kg, m=440 kg
V=1000 m/s, v = 100 m/s
Let relative speed =Vs
Momentum rule says
(M+m)V=mVs+M(Vs-v)
940(1000)=500(Vs-100)+440Vs
940000=500Vs-50000+440Vs
940Vs=940000+50000
940Vs=990000
Vs= 990000/940=1053.19 m/s
So, the module speed = Vs-v=1053.19-100=953.19 m/s
Fractional increase in KE is given by;
Total KE after explosion / He before explosion
=500(953.19)2+ 400(1053.19)2/ 940(1000)2= 0.955286
Answer:
10000N
Explanation:
Given parameters:
Mass of the car = 1000kg
Acceleration = 3m/s²
g = 10m/s²
Unknown:
Weight of the car = ?
Solution:
To solve this problem we must understand that weight is the vertical gravitational force that acts on a body.
Weight = mass x acceleration due to gravity
So;
Weight = 1000 x 10 = 10000N
Answer: 
Explanation:
Given
mass of wagon m=5 kg
elevation

Sin component of weight will oppose the applied force therefore we can write

