Answer:
I₁ = 1.6 A (through 7 Ohm Resistor)
I₂ = 1.3 A (through 8 Ohm Resistor)
I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)
Explanation:
Here we consider two loops doe applying Kirchhoff's Voltage Law (KVL). The 1st loop is the left side one with a voltage source of 12 V and the 2nd Loop is the right side one with a voltage source of 9 V. We name the sources and resistor's as follows:
R₁ = 7 Ω
R₂ = 4 Ω
R₃ = 8 Ω
V₁ = 12 V
V₂ = 9 V
Now, we apply KVL to 1st Loop:
V₁ = I₁R₁ + (I₁ - I₂)R₂
12 = 7I₁ + (I₁ - I₂)(4)
12 = 7I₁ + 4I₁ - 4I₂
I₁ = (12 + 4 I₂)/11 ------------ equation (1)
Now, we apply KVL to 2nd Loop:
V₂ = (I₂ - I₁)R₂ + I₂R₃
9 = (I₂ - I₁)(4) + 8I₂
9 = 4I₂ - 4I₁ + 8I₂
9 = 12I₂ - 4I₁ -------------- equation (2)
using equation (1)
9 = 12I₂ - 4[(12 + 4 I₂)/11]
99 = 132 I₂ - 48 - 16 I₂
147 = 116 I₂
I₂ = 147/116
I₂ = 1.3 A
use this value in equation 2:
9 = 12(1.3 A) - 4I₁
4I₁ = 15.6 - 9
I₁ = 6.6 A/4
I₁ = 1.6 A
Hence, the currents through all resistors are:
<u>I₁ = 1.6 A (through 7 Ohm Resistor)</u>
<u>I₂ = 1.3 A (through 8 Ohm Resistor)</u>
<u>I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)</u>
Answer:
200 , 0 , 133.33333
Explanation:
velocity = change of X / change of T
so
400/2 = 200
0/2 = 0
400/3 = 133.33333
2500
--------=3125
0.8
This can be can be viewed as compression due to the direction of the arrows.
Answer:
Force exerted, F = 1.5 N
Explanation:
It is given that, a boxer punches a sheet of paper in midair and brings it from rest up to a speed of 30 m/s in 0.060 s.
i.e. u = 0
v = 30 m/s
Time taken, t = 0.06 s
Mass of the paper, m = 0.003 kg
We need to find the force the boxer exert on it. The force can be calculated using second law of motion as :



F = 1.5 N
So, the force the boxer exert on the paper is 1.5 N. Hence, this is the required solution.
Answer:
a) their potential energy increases.
Explanation:
Ohm's Law is
R= V/I
Where R= Resistance
V= potential difference or potential energy
I= current or conduction electron flow rate
Clearly R and V are directly proportional i-e Potential energy increases with resistance.