The whole question is talking about the amplitude of a wave
that's transverse and wiggling vertically.
Equilibrium to the crest . . . that's the amplitude.
Crest to trough . . . that's double the amplitude.
Trough to trough . . . How did that get in here ? Yes, that's
the wavelength, but it has nothing to do
with vertical displacement.
Frequency . . . that's how many complete waves pass a mark
on the ground every second. Doesn't belong here.
Notice that this has to be a transverse wave. If it's a longitudinal wave,
like sound or a slinky, then it may not have any displacement at all
across the direction it's moving.
It also has to be a vertically 'polarized' wave. If it's wiggling across
the direction it's traveling BUT it's wiggling side-to-side, then it has
no vertical displacement. It still has an amplitude, but the amplitude
is all horizontal.
The force that holds the gases in the sun. The force that causes a ball you throw in the air to come down again
the resistance of the cable is 582.9 ohms
we are given the length of the cable which is 3 km, of 1.5 mm in, the diameter and resistivity of copper which is 1.72 m
The formula we are referring to for calculating the resistance of the cable is
R = ρl/A.
As there are 19 strands of copper conductors, so the resistance will be
R = 19( ρl/A)
Here ρ is the resisitivity = 1.72 , l is the length = 3(1+0.05)*10³3= 3150 m
A=pie/4(1.5 x 10⁻³)^2 =1.766 x 10⁻⁶ =1.766 x 10^-6
Substituting the values in the formula we get
R = 19 ( 1.72*3150 )/1.766 x 10⁻⁶
= 582.9 ohm
To know more about resistance refer to the linkhttps://brainly.com/question/14547003?referrer=searchResults.
#SPJ4
To solve this problem we will apply the principles of energy conservation. On the one hand we have that the work done by the non-conservative force is equivalent to -30J while the work done by the conservative force is 50J.
This leads to the direct conclusion that the resulting energy is 20J.
The conservative force is linked to the movement caused by the sum of the two energies, therefore there is an increase in kinetic energy. The decrease in the mechanical energy of the system is directly due to the loss given by the non-conservative force, therefore there is a decrease in mechanical energy.
Therefore the correct answer is A. Kintetic energy increases and mechanical energy decreases.
Answer:
Explanation:
This question is based on the Law of Conservation of Angular Momentum.
Angular momentum (L) equals the moment of inertia (I) times the angular speed (ω).
L = Iω
If momentum is conserved,
I₁ω₁ = I₂ω₂
Data:
I₁ = 3.5 kg·m²s⁻¹
ω₁ = 6.0 rev·s⁻¹
I₂ = 0.70 kg·m²s⁻¹
Calculation:
