Answer:
x^5 - 5 x^4 + 9 x^3 - 9 x^2 + 12 x - 12
Step-by-step explanation:
(x ^4 - 3x^3 + 3x^2 - 3x + 6) (x - 2)
Distribute the x to all the terms in the first parentheses
(x^ 4 *x - 3x^ 3 *x + 3x^ 2 *x - 3x *x + 6*x)
Then simplify
(x^5 - 3x^4 + 3x^ 3 - 3x2 + 6x)
Distribute the -2 to all the terms in the first parentheses
(x^ 4 *(-2) - 3x^ 3 *(-2) + 3x^ 2 *(-2) - 3x *(-2) + 6*(-2))
Then simplify
(-2x^4 +6x^3 -6x^ 2 +6x -12)
Add the terms together
(x^5 - 3x^4 + 3x^ 3 - 3x2 + 6x) +(-2x^4 +6x^3 -6x^ 2 +6x -12)
x^5 - 5 x^4 + 9 x^3 - 9 x^2 + 12 x - 12
Answer:
The first one. Top left.
Step-by-step explanation:
The top right one makes a triangular prism.
I don't even know if the bottom right is even a thing.
The bottom left is a cube.
Answer:
38.88
Step-by-step explanation:
Answer:
it that a comma or decimal
Triangular sequence = n(n + 1)/2
If 630 is a triangular number, then:
n(n + 1)/2 = 630
Then n should be a positive whole number if 630 is a triangular number.
n(n + 1)/2 = 630
n(n + 1) = 2*630
n(n + 1) = 1260
n² + n = 1260
n² + n - 1260 = 0
By trial an error note that 1260 = 35 * 36
n² + n - 1260 = 0
Replace n with 36n - 35n
n² + 36n - 35n - 1260 = 0
n(n + 36) - 35(n + 36) = 0
(n + 36)(n - 35) = 0
n + 36 = 0 or n - 35 = 0
n = 0 - 36, or n = 0 + 35
n = -36, or 35
n can not be negative.
n = 35 is valid.
Since n is a positive whole number, that means 630 is a triangular number.
So the answer is True.