Can i have more information?
Answer:
![F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]](https://tex.z-dn.net/?f=F_T%3D6k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bi%7D%2B10k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bj%7D%3D2k%5Cfrac%7BQ%5E2%7D%7BL%7D%5B3%5Chat%7Bi%7D%2B5%5Chat%7Bj%7D%5D)


Explanation:
I attached an image below with the scheme of the system:
The total force on the charge 2Q is the sum of the contribution of the forces between 2Q and the other charges:
![F_T=F_Q+F_{3Q}+F_{4Q}\\\\F_T=k\frac{(Q)(2Q)}{R_1}\hat{i}+k\frac{(3Q)(2Q)}{R_2}\hat{j}+k\frac{(4Q)(2Q)}{R_3}[cos\theta \hat{i}+sin\theta \hat{j}]](https://tex.z-dn.net/?f=F_T%3DF_Q%2BF_%7B3Q%7D%2BF_%7B4Q%7D%5C%5C%5C%5CF_T%3Dk%5Cfrac%7B%28Q%29%282Q%29%7D%7BR_1%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B%283Q%29%282Q%29%7D%7BR_2%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B%284Q%29%282Q%29%7D%7BR_3%7D%5Bcos%5Ctheta%20%5Chat%7Bi%7D%2Bsin%5Ctheta%20%5Chat%7Bj%7D%5D)
the distances R1, R2 and R3, for a square arrangement is:
R1 = L
R2 = L
R3 = (√2)L
θ = 45°
![F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[cos(45\°)\hat{i}+sin(45\°)\hat{j}]\\\\F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[\frac{\sqrt{2}}{2}\hat{i}+\frac{\sqrt{2}}{2}\hat{j}]\\\\F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]](https://tex.z-dn.net/?f=F_T%3Dk%5Cfrac%7B2Q%5E2%7D%7BL%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B6Q%5E2%7D%7BL%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B8Q%5E2%7D%7B%5Csqrt%7B2%7DL%7D%5Bcos%2845%5C%C2%B0%29%5Chat%7Bi%7D%2Bsin%2845%5C%C2%B0%29%5Chat%7Bj%7D%5D%5C%5C%5C%5CF_T%3Dk%5Cfrac%7B2Q%5E2%7D%7BL%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B6Q%5E2%7D%7BL%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B8Q%5E2%7D%7B%5Csqrt%7B2%7DL%7D%5B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Chat%7Bi%7D%2B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Chat%7Bj%7D%5D%5C%5C%5C%5CF_T%3D6k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bi%7D%2B10k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bj%7D%3D2k%5Cfrac%7BQ%5E2%7D%7BL%7D%5B3%5Chat%7Bi%7D%2B5%5Chat%7Bj%7D%5D)
and the magnitude is:

the direction is:

Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.
<span>A portion of the atmosphere that becomes warmer than surrounding air will expand and rise. The warmer atmosphere the more space between the molecules. Therefore, warmer atmosphere </span><span>expands to allow more space for the molecules. Cool air on the other hand, contracts because the molecules in cool air need less space.</span>