Answer:

Explanation:
To solve this problem, we can use the following suvat equation:

where
is the vertical displacement of the frog
is the initial vertical velocity
t is the time
a is the acceleration
We have chosen this formula because apart from
, all the other quantities are known. In fact:
is the vertical displacement
t = 2 s is the total time of flight
is the acceleration due to gravity (negative because it is downward)
Therefore, solving for
, we find the initial velocity of the frog:

Answer: Satellite X has a greater period and a slower tangential speed than Satellite Y
Explanation:
According to Kepler’s Third Law of Planetary motion “The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
(1)
Where;
is the Gravitational Constant
is the mass of the Earth
is the semimajor axis of the orbit each satellite describes around Earth (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
So for satellite X, the orbital period
is:
(2)
Where 
(3)
(4)
For satellite Y, the orbital period
is:
(5)
Where 
(6)
(7)
This means 
Now let's calculate the tangential speed for both satellites:
<u>For Satellite X:</u>
(8)
(9)
<u>For Satellite Y:</u>
(10)
(11)
This means 
Therefore:
Satellite X has a greater period and a slower tangential speed than Satellite Y
Answer:

Explanation:
The shear stress due to torque can be calculed by using the following model:

The maximum torque on the section is:

The Torsion Constant for the circular tube is:

![J_{tube} = \frac{\pi}{4}\cdot [(0.053\,m)^{4}-(0.038\,m)^{4}]](https://tex.z-dn.net/?f=J_%7Btube%7D%20%3D%20%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20%5B%280.053%5C%2Cm%29%5E%7B4%7D-%280.038%5C%2Cm%29%5E%7B4%7D%5D)

Now, the require output is computed:


Answer:
Velocity
Explanation:
The gradient= change in velocity
——————————
Change in time