And what’s the question?????
There is only one solution in the given equation -y2 − [-5y − y(-7y − 9)] − [-y (15y + 4)] = 0. In solving this problem, apply first PEMDAS (parenthesis, exponents,multiplication, division, addition, subtraction). Then equation will transform into -y2+5y-7y2-9y+15y2+4y=0. Combine terms with same power and achieve 7y2=0. Divide both sides with 7 and perform square root of zero. Since the root is zero, we have one solution of the given equation which is y=0.
Answer:
32pi
Radius=1/2 Diameter
radius=2
Area of circle= pi*radius^2= 4pi
4pi*8=32 pi
First list all the terms out.
e^ix = 1 + ix/1! + (ix)^2/2! + (ix)^3/3! ...
Then, we can expand them.
e^ix = 1 + ix/1! + i^2x^2/2! + i^3x^3/3!...
Then, we can use the rules of raising i to a power.
e^ix = 1 + ix - x^2/2! - ix^3/3!...
Then, we can sort all the real and imaginary terms.
e^ix = (1 - x^2/2!...) + i(x - x^3/3!...)
We can simplify this.
e^ix = cos x + i sin x
This is Euler's Formula.
What happens if we put in pi?
x = pi
e^i*pi = cos(pi) + i sin(pi)
cos(pi) = -1
i sin(pi) = 0
e^i*pi = -1 OR e^i*pi + 1 = 0
That is Euler's identity.