Explanation:
The mass of bromine is 79.904, and since there are two of them in the Calcium Bromide molecule, we'll multiply it by 2 to get 159.808. Dividing that by the full mass of the molecule then multiply it by 100 will give you the answer.
Answer:
double covalent bond
Explanation:
Double covalent bond -
It is the type of interaction observed between two species , which share the electrons in order to attain stability , is referred to as covalent bond.
The shared electrons are referred to as the bonding pairs or the shared pairs .
Stability and completion of the octet is the driving force for the formation covalent bond.
The molecules of the organic compound usually shows this type bonding .
A double covalent bond is the one which have four shared pair of electrons , i.e. two covalent bonds.
Hence , from the question,
Oxygen is capable to show double covalent bond .
Answer:
12430mL of water must be added
Explanation:
To solve this question we need to convert the 20%w of CuSO₄ to molarity. Then, using the <em>diulution factor </em>we can find the amount of water required:
20g CuSO₄ / 100mL * (1mol / 159.609g CuSO₄) = 0.1253 moles / 100mL = 0.1253mol / 0.1L =
1.25M is the concentration of CuSO₄. To dilute this concentration to 0.01M, the dilution factor must be of:
1.25M / 0.01M = 125 times must be diluted the solution.
As the volume of the concentrated solution is 100mL, the total volume of the solution to have a 0.01M solution must be of:
100mL * 125 times = 12530mL is the final volume of the solution. That means the amount of water added must be of:
12530mL - 100mL =
<h3>12430mL of water must be added</h3>
Answer:
it gains energy in a quantized amount
Explanation:
when we describe the energy of a particle as a quantized ,we mean that only certain values of energy are allowed....it can only gain the exact amount of energy needed to reach one of the higher energy levels
hope this helps :)
Answer:
The partial pressure of ammonia at equilibrium when a sufficient quantity of ammonium iodide is heated to 400°C Is 0.103 atm.
The correct option is A.
Explanation;
NH4I(s) ⇋ NH3(g) + HI(g)Kp = 0.215 at 400°C
NH4I(s)= 0.215
NH3(g)=0.103
HI(g)Kp=0.112
Therefore = 0.103 +0.112= 0.215
Therefore the partial pressure of ammonia at equilibrium is 0.103 atm