Answer:
= 97.44 Liters at S.T.P
Explanation:
The reaction between Iron (iii) oxide and Carbon monoxide is given by the equation;
Fe2O3(s)+ 3CO(g) → 3CO2(g) + 2Fe(s)
From the reaction when the reactants react, 2 moles of Fe and 3 moles of CO2 are produced.
Therefore; Mole ratio of Iron : Carbon dioxide is 2:3
Thus; Moles of Carbon dioxide = (2.9/2)×3
= 4.35 moles
But; 1 mole of CO2 at s.t.p occupies 22.4 liters
Therefore;
Mass of CO2 = 22.4 × 4.35 Moles
= 97.44 L
They are examples of elements.
<u>Answer:</u> The expression of
is written below.
<u>Explanation:</u>
We are given a chemical compound which is trimethylamine that acts as a weak base when dissolved in water.
It accepts a proton from the water to form trimethylammonium ion and hydroxide ion.
The chemical equation for the reaction of trimethylamine in water follows:
![(CH_3)_3N+H_2O\rightleftharpoons (CH_3)_3NH^++OH^-](https://tex.z-dn.net/?f=%28CH_3%29_3N%2BH_2O%5Crightleftharpoons%20%28CH_3%29_3NH%5E%2B%2BOH%5E-)
The expression of
for above equation follows:
![K_b=\frac{[(CH_3)_3NH^+][OH^-]}{[(CH_3)_3N]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5B%28CH_3%29_3NH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5B%28CH_3%29_3N%5D%7D)
Hence, the expression of
is written above.
The problem above can be solved using M1V1=M2V2 where M1 is the concentration of the concentrated, V1 is the volume of the concentrated solution, M2 is the concentration of the Dilute Solution, V2 is the Volume of the dilute solution. Hence,
(3.0 M)(V2)=(250 mL)(1.2M)
V2 (3.0)= 300
V2= 100 mL
Therefore, you need 100 mL of 3.0 M HCl to form a 250 mL of 1.2 M HCl.
Anaphase 1 is when centromeres divide