1-Electric Energy
Example: A lightbulb is an example of electric energy
2-Sound Energy
Example: When a dog barks, that is sound energy
3-Solar Energy
Example: When we use the sun for energy. Like using it to dry our clothes.
4-Chemical Energy
Example: An example is a battery. That may not seem like it, but it is Chemical Energy.
5-Nuclear Energy
Example: A fission reaction at a nuclear powerplant
6-Thermal Energy
Example: A pot of water boiling on an Electric Stove
~Silver
Volume = 22.4 dm3
n = 2 mol of H2
n = 1 mol of N2
Temperature = 273.15
All H2 reacts
reaction
N2 + 3H2 = 2NH3
1:3 ratio
Calculation:
N2 initial - N2 reacted = Final N2
1 - 2*(1/3) = 0.3333 mol of N2 left
H2 = 0 left
NH3 formed = 2/3*1 = 2/3 = 0.666
Total mol:
0.3333 + 0.666 = 1 mol
Apply the equation :
PV = nRT
P = nRT/V = 1*0.0082*(273.15)/(22.4) = 0.0999924 atm
PH2 = 0
PN2 = 1/3*0.0999924 = 0.0333308 atm
PNH3 = 2/3*0.0999924 = 0.0666616 atm
Answer is 0.0666616 atm
<h3>
Answer:</h3>
Al- [Ne] 3s²3p¹
As- [Ar] 4s²3d¹⁰ 4p³
Explanation:
- Electron configuration of an element shows the arrangement of electrons in the energy levels or orbitals in the atom.
- Noble-gas configuration involves use of noble gases to write the configuration of other elements.
- This is done by identifying the atomic number of the element and then identifying the noble gas that comes before that particular element on the periodic table.
- Aluminium: The atomic number of Al is 13. The noble gas before Aluminium is Neon which has 10 electrons. Therefore the remaining 3 electrons fills up the 3s and 3p sub orbitals.
- Thus, the noble-gas configuration of Al is [Ne] 3s²3p¹
2. Arsenic, Atomic number is 33
- Noble gas before Arsenic is Ar,. Argon has 17 electrons, then the remaining electrons fills up the 4s, 3d and 4p sub-orbitals.
- Thus, the noble-gas configuration of As is [Ar] 4s²3d¹⁰ 4p³
Answer:
yes, it is a homogeneous mixture because the different parts cannot be seen.
Explanation:
a) Copper is at a higher temperature, so the flow of heat will take place from copper to iron. Heat is a form of energy, which always flows from higher temperature to lower temperature.
b) To determine the actual final temperature, the heat capacity of the calorimeter must be known. A calorimeter constant refers to a constant, which quantifies the heat capacity of a calorimeter. It may be determined by using a known amount of heat to the calorimeter and measuring the corresponding change in temperature of the calorimeter.