Hope it helped you.
A. Acceleration is a wrong answer. Acceleration is the rate of change to in velocity. It involves a change in speed and direction.
B. Force is a wrong answer. Force is a directions from push/or pull.
C. Inertia is a correct. Inertia is a tendency of an object to stay at the rest or preserve its state of motion.
D. Velocity is a incorrect answer. Velocity is the placement of an object during a specific unit of time. It has two measurements are needed to determine velocity.
-Charlie
-Thank you so much!
Have a great day!
Momentum = (mass) x (speed)
Momentum = (12,000 kg) x (40 m/s)
Momentum = (12,000 x 40) kg-m/s
<em>Momentum = 480,000 kg-m/s </em>
Answer:
Q = A ⊕ B = (A AND B) + ( not(A) AND not(B) )
Explanation:
AND gates : only output 1 when both inputs are 1
OR gate: only output 1 when either or both of the inputs are 1
NOT gates: takes only one input ad output the opposite of the input
The required circuit should takes two inputs and outputs a 1 if and only if the two inputs are the same signal.
The two possible scenarios : both input are 1's or 0's
Q = A ⊕ B = (A AND B) + ( not(A) AND not(B) )
A B not(A) not(B) A AND B not(A) AND not(B) Q
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1
Answer:
The speed of the banana just before it hits the water is:
√(2 · g · h) = v
Explanation:
Hi there!
Before Emily throws the banana, its potential energy is:
PE = m · g · h
Where:
PE = potential energy.
m = mass of the banana.
g = acceleration of the banana due to gravity.
h = height of the bridge (distance from the bridge to the ground).
When the banana reaches the water, all its potential energy will have converted to kinetic energy. The equation for kinetic energy is as follows:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass of the banana.
v = speed.
Then, when the banana hits the water:
m · g · h = 1/2 · m · v²
multiply by 2 and divide by m both sides of the equation:
2 · g · h = v²
√(2 · g · h) = v
Answer:
The acceleration of the sprinter is 1.4 m/s²
Explanation:
Hi there!
The equation of position of the sprinter is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the sprinter at a time t.
x0 = initial position.
v0 = initial velocity.
t = time.
a = acceleration.
Since the origin of the frame of reference is located at the starting point and the sprinter starts from rest, then, x0 and v0 are equal to zero:
x = 1/2 · a · t²
At t = 9.9 s, x = 71 m
71 m = 1/2 · a · (9.9 s)²
2 · 71 m / (9.9 s)² = a
a = 1.4 m/s²
The acceleration of the sprinter is 1.4 m/s²