Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N
Hello,
The question states: <span>The Robinson projection map is considered very useful because...
The answer is

Hope this helped!
~FoodJunky
</span>
Answer: 1.88 N
Explanation:
Data:
Force = 4.00N
angle = 62°
horizontal force = ?
Solution:
The trigonometric ratio that relates horizontal - leg to hypotenuse is the cosine.
That ratio is:
horizontal - leg
cos(angle) = -------------------------
hypotenuse
So, applied to the force, that is:
horizontal force
cos (angle) = -----------------------------------
total force
So, clearing the horizontal component you get:
horizontal force = force * cos (angle)
Substitute the data given:
horizontal force = 4.00N * cos(62°) = 4.00N * 0.4695 = 1.88 N
Answer: 1.88N
Answer:
The answer is either 5 or I'm learning something different and I just can't read
Explanation:
I hope this helped...
Answer:
This is Newton’s third law (forces due to friction). There would be 15N being pushed back at Jane.
Explanation:
Newton’s third law states that for every action there is an equal and opposite reaction. So if Jane pushed with a force of 15N, 15N would be pushed back at her. Hope this helps! :)