1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
12

You are riding on a school bus and suddenly get thrown forward . what did the buss just do

Physics
2 answers:
Ilia_Sergeevich [38]3 years ago
5 0
B i think is the answer
larisa86 [58]3 years ago
5 0
B is the answer its the only one that is correct
You might be interested in
The chemical symbol for sulfuric acid is H2SO4. How many atoms are contained in each molecule of sulfuric acid?
cricket20 [7]
You know from looking at the molecular formula<span> that one </span>molecule<span> of </span>H2SO4<span> contains 2 </span>atoms<span> of hydrogen, 1 atom of sulfur and 4 </span>atoms<span> of oxygen.</span>
5 0
3 years ago
A specific amount of water would have the same mass even if you turned it from a liquid to a solid or a gas is an example of
Elena L [17]

Answer:

b.Law of conservation of mass

7 0
3 years ago
Read 2 more answers
A spherical Christmas tree ornament is 8.00 cm in diameter. What is the magnification of an object placed 12.0 cm away from the
LiRa [457]

The magnification of the ornament is 0.25

To calculate the magnification of the ornament, first, we need to find the image distance.

Formula:

  • 1/f = u⁻¹+v⁻¹.................... Equation 1

Where:

  • f = Focal length of the ornament
  • u = image distance
  • v = object distance.

make u the subject of the equation

  • u = fv/(f+v)................ Equation 2

From the question,

Given:

  • f = 8/2 = 4 cm
  • v = 12 cm

Substitute these values into equation 2

  • u = (12×4)/(12+4)
  • u = 48/16
  • u = 3 cm.

Finally, to get the magnification of the ornament, we use the formula below.

  • M = u/v.................. Equation 3

Where

  • M = magnification of the ornament.

Substitute these values above into equation 3

  • M = 3/12
  • M = 0.25.

Hence, The magnification of the ornament is 0.25

8 0
2 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
2 years ago
Find the instantaneous velocity at 1 s . can anyone help with c-h!!!
Lelu [443]
Rise over run at 1 second
It’s the same slope from 0 to 2 seconds
10/2=5mps
As a note all time points between 0and 2 will have this instantaneous velocity

Instantaneous velocity at time 2 is 0
7 0
3 years ago
Other questions:
  • Hello, What is a four letter word the second letter is a O, and the hint is, “A period or measurement of time”
    7·2 answers
  • Express the vector R<br> B<br> in terms of A, B, C, and Ď, the edges of a<br> parallelogram.
    5·1 answer
  • If a star contains a certain element, it can be determined by studying the star’s
    9·1 answer
  • I don't know how to do this. Working on #2
    14·1 answer
  • A hot air balloon is flying above Grovenburg. To the left side of the balloon, the balloonist measure the angle of depression to
    8·1 answer
  • A car slow down at -5.00 m/s2 until it comes to a stop after traveling 15.0 m. What was the initial speed of the car? (Unit=m/s)
    14·2 answers
  • Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 5.00 cm.
    12·1 answer
  • a particle moves along the x axis with an acceleration of a=18t, where a has units if m/s2. if the particle at time t=0 is at th
    10·1 answer
  • You drop some ice and notice a piece appears to slide across the kitchen floor without slowing down (until it hits the wall). wh
    9·2 answers
  • when a stationary rugby ball is kicked, it is contact with a player's about for 0.05 s. during this short time, the ball acceler
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!