Answer:

Explanation:
Let assume that gases inside bulbs behave as an ideal gas and have the same temperature. Then, conditions of gases before and after valve opened are now modelled:
Bulb A (2 L, 2 atm) - Before opening:

Bulb B (3 L, 4 atm) - Before opening:

Bulbs A & B (5 L) - After opening:

After some algebraic manipulation, a formula for final pressure is derived:

And final pressure is obtained:


Here's a perfect example of a stable and unstable system.
Answer:
car1: a=3.1m/s^2 , car2: a=6.1m/s^2
(a) 1/2*3.1*t^2= 1/2*6.1*(t-0.9)^2
1.55t^2= 3.05(t^2-1.8t+0.81)= 3.05t^2-5.49t+2.4705
1.5t^2-5.49t+2.4705= 0
t= 3.13457 = 3.14[s] after.
(b) d= 1/2*3.1*3.13457^2= 15.23[m] approx.
(c) car1: v=at = 3.1*3.13457= 9.717m/s
car2: v=at = 6.1*(3.13457-0.9)= 13.631m/s
13.631-9.717= 3.914 = 3.91[m/s] faster than car1.
Prejudice- <span>not based on reason or actual experience.
Bias- Usually based off of relation/knowledge or favor</span>
B. truthfully it's the only one that makes sense