2<span>(<span>log4</span><span>(3)</span>+<span>log4</span><span>(x)</span>+<span>log4</span><span>(y)</span>+<span>log4</span><span>(z)</span><span>)</span></span>
The value of the cosine ratio cos(L) is 5/13
<h3>How to determine the cosine ratio?</h3>
The complete question is added as an attachment
Start by calculating the hypotenuse (h) using
h^2 = 5^2 + 12^2
Evaluate the exponent
h^2 = 25 + 144
Evaluate the sum
h^2 = 169
Evaluate the exponent of both sides
h = 13
The cosine ratio is then calculated as:
cos(L) = KL/h
This gives
cos(L) =5/13
Hence, the value of the cosine ratio cos(L) is 5/13
Read more about right triangles at:
brainly.com/question/2437195
#SPJ1
Answer:
i will just give you the answer <u><em>1e+45</em></u>
Step-by-step explanation:
For this case, the first thing to do is to graph the following ordered pairs:
(-6, -1)
(-3, 2)
(-1,4)
(2,7)
We observe that the graph is a linear function with the following equation:
y = x + 5
Note: see attached image.
Answer:
The function that best represents the ordered pairs is:
y = x + 5