Answer:
TRUE
Explanation:
Production of Hydrocarbons from Natural Gas is as stated below:
Natural gas liquids include propane, butane, pentane, hexane, and heptane, but not methane and not <u>always</u> ethane, (<em>may include it </em><em><u>sometimes</u></em><em>.</em>) s<em>ince these hydrocarbons need refrigeration to be liquefied.</em>
Answer: 104 g
Explanation: reaction Cr2O3 + 3 H2 ⇒ 2 Cr + 3 H2O
M(Cr2O3) = 150 g/mol, so n = m/M = 1.0 mol
Number of moles of H2 should be 3.0 moles and
It is much greater (150 g / 2.016 g/mol)
1 mol Cr2O3 produces 2 mol Cr.
Mass m= 2.0 mol· 52g/mol= 104 g
electrons are transferred in a oxidation-reduction reaction
oxidation reduction chemical equation involve electrons transfer between two species. In this reduction-oxidation type of chemical equation oxidation number of molecule, atoms or ion changes by gaining or losing electrons,that is there an oxidizing agent and a reducing agent in the reaction.
To increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
<h3>What is energy of emitted electron?</h3>
The maximum energy of an emitted electron is equal to the energy of a photon for frequency f (E = hf ), minus the energy required to eject an electron from the metal's surface, also known as work function.
Ee = E - W
<h3>Energy of the emitted electron</h3>
The energy of emitted electrons based on the research of Albert Einstein is given as;
E = hf
where;
- h is planck's constant
- f is frequency of incident light on the metal
Thus, to increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
Learn more about energy of electron here: brainly.com/question/11316046
#SPJ1