Answer:
Step-by-step explanation:
<u><em>8).</em></u>
<em>(2)</em> × [ - 3 ]
4x + 3y = 1 ........ <em>(3)</em>
- 3x - 3y = - 6 .... <em>(4)</em>
<em>(3)</em> + <em>(4)</em>
x = - 5
- 5 + y = 2 ⇒ y = 7
<em>( - 5 , 7 )</em>
<u><em>9).</em></u>
<em>(1)</em> ÷ [- 3]
3x - y = - 6 ......... <em>(3)</em>
2x + y = - 4 ........ <em>(4)</em>
<em>(3)</em> + <em>(4)</em>
5x = - 10 ⇒ x = - 2
2(- 2) + y = - 4 ⇒ y = 0
<em>(- 2, 0)</em>
<u><em>10).</em></u>
<em>(2)</em> ÷ 10
x - 0.6y = 0 ⇒ x = 0.6y -----> <em>(1)</em>
0.6y - 2y = 14
- 1.4y = 14
y = - 10
x - 2(- 10) = 14 ⇒ x = - 6
<em>(- 6, - 10)</em>
Now is your turn, you can do it!!
Answer:
a. [ 0.454,0.51]
b. 599.472 ~ 600
Step-by-step explanation:
a)
Confidence Interval For Proportion
CI = p ± Z a/2 Sqrt(p*(1-p)/n)))
x = Mean
n = Sample Size
a = 1 - (Confidence Level/100)
Za/2 = Z-table value
CI = Confidence Interval
Mean(x)=410
Sample Size(n)=850
Sample proportion = x/n =0.482
Confidence Interval = [ 0.482 ±Z a/2 ( Sqrt ( 0.482*0.518) /850)]
= [ 0.482 - 1.645* Sqrt(0) , 0.482 + 1.65* Sqrt(0) ]
= [ 0.454,0.51]
b)
Compute Sample Size ( n ) = n=(Z/E)^2*p*(1-p)
Z a/2 at 0.05 is = 1.96
Samle Proportion = 0.482
ME = 0.04
n = ( 1.96 / 0.04 )^2 * 0.482*0.518
= 599.472 ~ 600
Answer:
52
Step-by-step explanation: