Among formic acid (HCOOH ) and sulfuric acid (H₂SO₄), formic acid is the weak acid. Acidic strength of any acid is the tendency of that acid to loose proton. Among these two acids formic acid has a pKa value of 3.74 greater than that of sulfuric acid i.e. -10. Remember! Greater the pKa value of acid weaker is that acid and vice versa. Below I have drawn the Ionization of both acids to corresponding conjugate bases and protons. The structures below with charges are drawn in order to explain the reason for strength. As it is seen in charged structure of formic acid, there is one positive charge on carbon next to oxygen carrying proton. The electron density is shifted toward carbon as it is electron deficient and demands more electron hence, attracting electron density from oxygen and making the oxygen hydrogen bond more polar. While, in case of sulfuric acid it is depicted that Sulfur attached to oxygen containing proton has 2+ charge, means more electron deficient as compared to carbon of formic acid, hence, more electron demanding and strongly attracting electrons from oxygen and making the oxygen hydrogen bond very polar and highly ionizable.

Answer:
See explanation
Explanation:
Electrons transition between energy levels in an atom due to gain or loss of energy. An electron may gain energy and move from its ground state to one of the accessible excited states. The electron quickly returns to ground state, emitting the energy previously absorbed as a photon of light. The wavelength of light emitted is measured using powerful spectrometers.
Atoms can be excited thermally or by irradiation with light of appropriate frequency.
Answer:
Give any two application for isotopes
Isotopes of iodine are used for radiotherapy in treatment of hyperthyroidism, cancer, etc.
Uranium, Radium, Polonium isotopes are used in atomic reactors.
Cobalt isotopes are used for irradiation of food products.
If your findings disproves your hypothesis then your hypothesis is probably wrong.