Darker colors absorb sunlight more, so it will become hotter. Lighter colored clothes will better reflect sun so they will be less hot.
Hope that helped
To determine the k for the second condition, we use the Arrhenius equation which relates the rates of reaction at different temperatures. We do as follows:
ln k1/k2 = E / R (1/T2 - 1/T1) where E is the activation energy and R universal gas constant.
ln 1.80x10^-2 / k2 = 80000 / 8.314 ( 1/723.15 - 1/593.15)
k2 = 0.3325 L / mol-s
Answer:
2.17 e -14
Explanation:
A strong acid like HCl ionize 100 % in water so [H3O+] = 0.46 M
[OH-] = Kw / [H3O+]
= 1.0 e -14 / 0.46
= 2.17 e -14
Answer:
balanced equation mole ratio 5 2 mol NO/1 mol O2
10.00 g O2 3 1 mol O2/32.00 g O2 5 0.3125 mol O2
20.00 g NO 3 1 mol NO/30.01 g NO 5 0.6664 mol NO
actual mole ratio 5 0.6664 mol NO/0.3125 mol O2 5 2.132 mol NO/1.000 mol O2
Because the actual mole ratio of NO:O2 is larger than the balanced equation mole
ratio of NO:O2, there is an excess of NO; O2 is the limiting reactant.
Mass of NO used 5 0.3125 mol O2 3 2 mol NO/1 mol O2 5 0.6250 mol NO
0.6250 mol NO 3 30.01 g NO/1 mol NO 5 18.76 g NO
Mass of NO2 produced 5 0.6250 mol NO2 3 46.01 g NO2/1 mol NO2 5 28.76 g NO2
Excess NO 5 20.00 g NO 2 18.76 g NO 5 1.24 g N
Explanation:
Answer:
The correct answer is 532 K
Explanation:
The Gay-Lussac law describes the behavior of a gas at constant volume, by changing the pressure or temperature. When is heated, the change in pressure of the gas is directly proportional to it absolute temperature (in Kelvin or K).
We have the following initial conditions:
P1= 71.8 kPa
T1= -104ºC +273 = 169 K
If the pressure increases until reaching 225.9 kPa (P2), we can calculate the final temperature of the gas (T2) by using the Gay-Lussac derived expression:
P1 x T2 = P2 x T1
⇒T2= (P2 x T1)/P1 = (225.9 kPa x 169 K)/71.8 kPa= 531.7 K ≅ 532 K