Answer:
Disagree with the suggestion based on the hygroscopic nature of anhydrous magnesium sulfate
Explanation:
Magnesium sulfate in the anhydrous form is a drying agent. A drying agent salts of inorganic compounds that has the capability of absorbing water to become hydrated, when placed in the presence of a wet surface or moist air
Anhydrous magnesium sulfate is therefore hygroscopic such that it absorbs water from the atmosphere and becomes hydrated and increases in size as its volume is increased according to the following chemical equation
MgSO₄(s) + 7H₂O(l) → MgSO₄·7H₂O(s)
The molar mass of anhydrous magnesium sulfate = 120.366 g/mol
The molar mass of the heptahydrate = 246.47 g/mol
Therefore, the mass of the magnesium sulfate doubles when it forms the heptahydrate, and the magnesium sulfate grows bigger.
Answer:
Answer 9 - 100 joules energy was at the producer level
Answer 10 - Remaining energy is used in metabolism
Explanation:
Answer 9
The energy at each trophic level is only 10% of the energy at its previous trophic level.
The energy at producer level is X
% of
Joules
Joules
Answer 10
Because the remaining 90% energy is utilized by the producer for its metabolism
3.07g H2
27.4/26.98/2x3x1.01x2=3.07
Answer:
Magnetic fields and Electric fields
Explanation:
Answer:
0.0468 g.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(1620 years) = 4.28 x 10⁻⁴ year⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 4.28 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = t1/2 x 8 = 1620 years x 8 = 12960 year).
a is the initial concentration (a = 12.0 g).
(a-x) is the remaining concentration.
∴ kt = lna/(a-x)
(4.28 x 10⁻⁴ year⁻¹)(12960 year) = ln(12)/(a-x).
5.54688 = ln(12)/(a-x).
Taking e for the both sides:
256.34 = (12)/(a-x).
<em>∴ (a-x) = 12/256.34 = 0.0468 g.</em>