Answer:
1.4 × 10² mL
Explanation:
There is some info missing. I looked at the question online.
<em>The air in a cylinder with a piston has a volume of 215 mL and a pressure of 625 mmHg. If the pressure inside the cylinder increases to 1.3 atm, what is the final volume, in milliliters, of the cylinder?</em>
Step 1: Given data
- Initial volume (V₁): 215 mL
- Initial pressure (P₁): 625 mmHg
- Final pressure (P₂): 1.3 atm
Step 2: Convert 625 mmHg to atm
We will use the conversion factor 1 atm = 760 mmHg.
625 mmHg × 1 atm/760 mmHg = 0.822 atm
Step 3: Calculate the final volume of the air
Assuming constant temperature and ideal behavior, we can calculate the final volume of the air using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 0.822 atm × 215 mL / 1.3 atm = 1.4 × 10² mL
CaSO4(s) might be an improperly capitalized: CAsO4(S), CaSO4(S)
Balanced equation:
K2SO4(aq) + CaI2(aq) = CaSO4(s) + 2 KI(aq)
Reaction type: double replacement.
Pb + Mg(NO₃)₂ → Pb(NO₃)₂ + Mg
This reaction would NOT occur because Pb is less reactive than Mg and as such Pb cannot displace the Mg in order for the reaction to occur under normal conditions.
Mg + Fe(NO₃)₂ → Fe + Mg(NO₃)₂
This reaction would occur. This is because Mg is more reactive than Fe and as such can displace it in the reaction, thus allowing the reaction to occur under normal conditions.
Cu + Mg(NO₃)₂ → Cu(NO₃)₂ + Mg
This reaction would NOT occur. Mg is more reactive than Cu, and as such copper cannot displace magnesium in order for the reaction to occur under normal conditions.