Answer:
Acceleration is :
a = 2.89 m/s2
Explanation:
Acceleration : It is the change in the velocity of the object per unit time.
The object starts from the rest , so the initial velocity of the object is zero.
Initial velocity , u = 0
Final velocity = 100 km/h
Change the velocity to m/s because[ time unit is in second(9.60 s)]
1 km = 1000 m
1 hour = 60 x 60 sec = 3600 sec




v = 27.78 m/s
u = 0 m/s
time = 9.60 s
The acceleration"a" is calculated using :




We know that organisms inherit their traits from their parents, and these traits are a combination of the traits their parents possessed. Therefore, by using a pedigree to map the ancestry of an organism, we may evaluate the propagation of a specific trait through the organism's family. An example of this is when people are assessed for the risk of diseases like breast cancer and sickle cell anemia.
The Relative Formula Mass of NaH2PO4 is 120 g/mol
Therefore, the number of moles = 6.6/120
= 0.055 moles of NaH2PO4 which is also equal to the number of moles of H2PO4.
[H2PO4-] = Number of moles oof H2PO4-/Volume of the solution in L
= 0.055/ ( 355 ×10^-3)
= 0.155 M
Na2HPO4 undergoes complete dissociation as follows;
Na2HPO4 (aq)= 2Na+ (aq) + HPO4^2- (aq)
1 mole of Na2HPO4 = 142 g/mol
Therefore; number of moles = 8.0/142
= 0.0563 moles
[HPO4 ^-2] is given by no of moles HPO4^2- /volume of the solution in L
= 0.0563/(355×10^-3)
= 0.1586 M
Both H2PO4^2- and HPO4^2- are weak acids the undergoes partial dissociation
Ka of H2PO4- = 6.20 × 10^-8
[H+] =Ka*([H2PO4-]/[HPO4(2-)]
= (6.20 ×10^-8)×(0.155/0.1586)
= 6.059 ×10^-8 M
pH = - log[H+]
= - log (6.059×10^-8)
= 7.218
Answer:
The nuclear decay of radioactive elements is a process that is a useful tool for determining the absolute age of fossils and rocks. It is used as a clock, in which daughter elements or isotopes converted from parent isotopes by decaying at a particular time.
Radioactive decay rates are constant and do not change over time. It is measured in half-life. A half-life is a time it takes half of a parent isotope to decay and converted into a stable daughter isotope. How many parent isotopes and daughter isotopes present in the fossil or their abundance can help in determining the age of fossil or rock.