Answer:
E = 8.83 kips
Explanation:
First, we determine the stress on the rod:

where,
σ = stress = ?
F = Force Applied = 1300 lb
A = Cross-sectional Area of rod = 0.5
Therefore,

Now, we determine the strain:

Now, the modulus of elasticity (E) is given as:

<u>E = 8.83 kips</u>
Answer:
furi has a good reputation for any other business in a few hours of this period of time as per it and the company is not a good place to start and it will have a lot of experience and you have to make a good recovery and you can do something that you can get a lot to be able and you have a lot to
Answer:
a. The very first liquid process, when heated from 1250 degree Celsius, is expected to form at the temperature by which the vertical line crosses the phase boundary (a -(a + L)) which is about <em>1310 degree Celsius. </em>
b. The structure of that first liquid is identified by the intersection with ((a+ L)-L) phase boundary; <em>47wt %of Ni</em> is of a tie line formed across the (a+ L) phase area <em>at 1310 degrees.</em>
c. To find the alloy's full melting, it is determined that the intersection of the same vertical line at 60 wt percent Ni with (a -(a+L)) phase boundary is around <em>1350 degrees.</em>
c. The structure of the last remaining solid before full melting correlates to the intersection with the phase boundary (a -(a + L), of the tie line built at 1350 degrees across the (a + L) phase area, <em>being 72wt % of Ni.</em>
Answer:

Explanation:
Given data:
carbon concentration = 0.54%
from the relation given below calculate the time required to achieve concentration at 6.00 mm from surface

D considered constant

here, x POSITION FROM SURFACE, t is time required to achieve concentration


