Answer: the average velocity decreases
Explanation:
From the provided data we have:
Vessel avg. diameter[mm] number
Aorta 25.0 1
Arteries 4.0 159
Arteioles 0.06 1.4*10^7
Capillaries 0.012 2.9*10^9
from the information, let
be the mass flow rate,
is density, n number of vessels, and A is the cross-section area for each vessel
the flow rate is constant so it is equal for all vessels,
The average velocity is related to the flow rate by:

we clear the side where v is in:

area is π*R^2 where R is the average radius of the vessel (diameter/2)
we get:

you can directly see in the last equation that if we go from the aorta to the capillaries, the number of vessels is going to increase ( n will increase and R is going to decrease ) . From the table, R is significantly smaller in magnitude orders than n, therefore, it wont impact the results as much as n. On the other hand, n will change from 1 to 2.9 giga vessels which will dramatically reduce the average blood velocity
Hydraulic radius is caused by pressurized hydrogen air so that should mean the answer is hydraulic radius
Answer:
See attached image for diagrams and solution
Answer:
(A) elemental, alloy, or compound thin films are deposited on to a bulk substrate
Explanation:
In film deposition there is process of depositing of material in form of thin films whose size varies between the nano meters to micrometers onto a surface. The material can be a single element a alloy or a compound.
This technology is very useful in semiconductor industries, in solar panels in CD drives etc
so from above discussion it is clear that option (a) will be the correct answer
Answer:
576.21kJ
Explanation:
#We know that:
The balance mass 
so, 

#Also, given the properties of water as;

#We assume constant properties for the steam at average temperatures:
#Replace known values in the equation above;
#Using the mass and energy balance relations;

#We have
: we replace the known values in the equation as;

#Hence,the amount of heat transferred when the steam temperature reaches 500°C is 576.21kJ