Answer:
Explanation:
Power is related to energy by the following relationship:
where
P is the power used
E is the energy used
t is the time elapsed
In this problem, we know that
- the power of the fan is P = 120 W
- the fan has been running for one hour, which corresponds to a time of
So we can re-arrange the previous equation to find E, the energy (in the form of thermal energy) released by the fan:
Answer:
option (b)
Explanation:
Let the resistance of each resistor is R.
In series combination,
The effective resistance is Rs.
rs = r + R + R + .... + n times = NR
Let V be the source of potential difference.
Power in series
Ps = v^2 / Rs = V^2 / NR ..... (1)
In parallel combination
the effective resistance is Rp
1 / Rp = 1 / R + 1 / R + .... + N times
1 / Rp = N / R
Rp = R / N
Power is parallel
Rp = v^2 / Rp = N V^2 / R ..... (2)
Divide equation (1) by equation (2) we get
Ps / Pp = 1 / N^2
Work = Force x Distance
Assuming that this work is being done parallel to the displacement that is, but under that assumption:
W = (50)(10)
W = 500 J
1. Most PE, because PE is directly proportional to distance (height)
Height: 100 meters
Speed: 0 mph
2. Most KE, because KE is directly proportional to speed
Height: 10 meters
Speed: 40 mph
3. Most TE, average KE
Height: 10 meters
Speed: 40 mph
4. The skater gains thermal energy as she goes down the slope, because the speed of the skater increases, so it increases the total kinetic energy of the particles, and makes them vibrate faster, resulting in a higher temperature.
True because molecules don't have to be compounds but compounds have to be molecules