Answer:
Explanation:
Given
Power Supplied
[/tex]
Efficiency of the motor 
and 



So, vacuum cleaner delivers a power of 
Answer:
The object will travel at the speed of 16 m/s.
Explanation:
Given
To determine
How fast is the object traveling?
<u>Important Tip:</u>
The product of the mass and velocity of an object — momentum.
Using the formula

where
Thus, in order to determine the speed of the object, all we need to do is to substitute p = 64 and m = 4 in the formula


switch the equation

divide both sides by 4

simplify
m/s
Therefore, the object will travel at the speed of 16 m/s.
Answer:
Explanation:
The moving charged particles in an electric current are called charge carriers. In metals, one or more electrons from each atom are loosely bound to the atom, and can move freely about within the metal. These conduction electrons are the charge carriers in metal conductors.
The flow of electrons in a direction is known as electric current. The tendency of attraction between the positive and negative charges makes electric current flow through a wire
<h2>
Answer:</h2>
In circuits, the average power is defined as the average of the instantaneous power over one period. The instantaneous power can be found as:

So the average power is:

But:

So:

![P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}(\frac{1+cos(2\omega t)}{2} )dt \\\\P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}[\frac{1}{2}+\frac{cos(2\omega t)}{2}]dt \\\\P=\frac{v_{m}i_{m}}{T}[\frac{1}{2}(t)\right|_0^T +\frac{sin(2\omega t)}{4\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2T}[(t)\right|_0^T +\frac{sin(2\omega t)}{2\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2}](https://tex.z-dn.net/?f=P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%28%5Cfrac%7B1%2Bcos%282%5Comega%20t%29%7D%7B2%7D%20%29dt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7Bcos%282%5Comega%20t%29%7D%7B2%7D%5Ddt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B4%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2T%7D%5B%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B2%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2%7D)
In terms of RMS values:
