I don't know if you need to complete this question or do it otherwise, however, I managed to find on the Internet on several places this completion of your sentence:
<span>Electric current flows through a long rod generating thermal energy at a uniform volumetric rate of q = 2 x 10</span>⁶ W/m³.
I'm not sure whether that is the answer you were looking for, but that's what I found.
Answer:
Explanation:
Call the bike on the right A
Call the bike on the left B
The car begins it's time when it passes A
4 minutes later, it passes B.
But B has moved in 4 minutes and that is the key to the problem.
How far has B moved.
t = 4 minutes = 4/60 hours = 1/15 of an hour.
d = ?
rate = 30 km / hr
d = r * t
d = 30 km/hr * 1/15 hours = 2 km
The distance between the bikes is 5 km.
So the car has traveled 5 - 2 = 3 km
d = 3 km
r = ?
t = 4 minutes = 1/15 hour
r = d/t = 3/(1/15)= 3 / 0.066666666 = 45 km/hr.
Potassium iodide
Molar mass: 166.0028 g/mol
Formula: KI
Answer:
the maximum is I₁ axis of rotation at the end
the minimum moment is I₂ axis of rotation at the center of mass
Explanation:
For this exercise we use the definition moment of inertia
I = ∫ r² dm
for bodies of high symmetry it is tabulated; In this case we can approximate a broomstick to a thin rod, the moment of inertia with respect to a perpendicular axis when varying are
at one end
I₁ = ⅓ mL²
in in center
I₂ =
m L²
There is another possible axis of rotation around the axis of the broom, in this case we have a solid cylinder
I₃ =
m r²
remember that the diameter of the broom is much smaller than its length, therefore this moment of inertia is very small
when examining the different moments of inertia:
the maximum is I₁ axis of rotation at the end
the minimum moment is I₂ axis of rotation at the center of mass