Answer:
Explanation:
The process is isothermic, as P V = constant .
work done = 2.303 n RT log P₁ / P₂
= 2.303 x 5 / 29 x 8.3 x 303 log 2 / 1 kJ
= 300.5k J
This energy in work done by the gas will come fro heat supplied as internal energy is constant due to constant temperature.
heat supplied = 300.5k J
specific volume is volume per unit mass
v / m
pv = n RT
pv = m / M RT
v / m = RT / p M
specific volume = RT / p M
option B is correct.
Answer:
Because the light reflects multiple times until it gets to the Cassegrain focus.
Explanation:
The Cassegrain design can be seen in a reflecting telescope. In this type of design the light is collected by a concave mirror, and then intercepted by a secondary convex mirror, and sends it down to a central opening in the primary mirror (concave mirror), in which a detector is placed (Cassegrain focus)
Since, the light is reflected many times due to Cassegrain design, that leads to shorter telescopes.
Answer:
To find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.
Explanation:
The emissive power of a light bulb can be given by the following formula:
E = σεAT⁴
where,
E = Power Input or Emissive Power
σ = Stefan-Boltzmann constant
ε = Emissivity
A = Area
T = Absolute Temperature
Therefore,
A = E/σεT⁴
So, to find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.
To solve this problem we will start from the given concept in which the number of turns is equivalent to the length of the thread per circumference of spool. That is:

Where,
l = length of the thread
= circumference of spool
For \phi we have that,

For l we have that
l = 62.8m
Finally the number of Turns would be,



Therefore the number of turns of thread on the spool are 1000turns.