Answer:
The railroad tracks are 13 m above the windshield (12 m without intermediate rounding).
Explanation:
First, let´s calculate the time it took the driver to travel the 27 m to the point of impact.
The equation for the position of the car is:
x = v · t
Where
x = position at time t
v = velocity
t = time
x = v · t
27 m = 17 m/s · t
27 m / 17 m/s = t
t = 1.6 s
Now let´s calculate the distance traveled by the bolt in that time. Let´s place the origin of the frame of reference at the height of the windshield:
The position of the bolt will be:
y = y0 + 1/2 · g · t²
Where
y = height of the bolt at time t
y0 = initial height of the bolt
g = acceleration due to gravity
t = time
Since the origin of the frame of reference is located at the windshield, at time 1.6 s the height of the bolt will be 0 m (impact on the windshield). Then, we can calculate the initial height of the bolt which is the height of the railroad tracks above the windshield:
y = y0 + 1/2 · g · t²
0 = y0 -1/2 · 9.8 m/s² · (1.6 s)²
y0 = 13 m
Answer:
Option 4
Explanation:
During heating actually heat transfer takes place from a body at higher temperature to a body at lower temperature and the heat transfer takes place until both attain the same temperature
Therefore heat transfer depends on the temperature of the systems
Now while comparing the thermal energies of the systems, if both the systems have same mass then the system which is at higher temperature has greater thermal energy when compared to the system which is at lower temperature
So in this case assuming that both the systems have same mass then the energy will leave the system with greater thermal energy and go into the system with less thermal energy as the system with greater thermal energy in this case will be at higher temperature and we are considering this assumption because thermal energy not only depends on temperature but also depends on mass of the system
Answer:
It is called so because it is applicable on all bodies having mass, and the bodies will be governed by the same law, that is newton's law of gravitation. Thus, as it is applicable universally, it is called as universal law.
The equator is warmer than the poles because the equator is closer to the sun. In other words, the sun is overhead the equator, which is a result of the Earth's curvature.