Combustion reaction for menthol is as follows;
CxHyOz + O₂ ---> xCO₂ + H₂O
Mass of CO₂ formed - 28.16 mg
Therefore number of moles formed - 28.16/ 44 g/mol = 0.64 mmol
Mass of water formed - 11.53 mg
number of water moles formed - 11.53 mg/18 g/mol = 0.64 mmol
From CO₂,
1 mol of CO₂ - 1 mol of C and 2 mol of O
therefore number of C moles - 0.64 mmol
O moles - 1.28 mmol
from H₂O
1 mol of H₂O - 2 mol of H and 1 mol of O
number of H moles - 1.28 mmol
O moles - 0.64 mmol
Mass of menthol initially - 10 mg
in reactions, the masses of products are equal to the masses of reactants. The excess mass to the products formed is due to O₂ in air
Original mass of menthol - 10 mg
mass of water and CO₂ - 11.53 mg + 28.16 mg = 39.69
Difference in mass - 39.69 - 10 = 29.69 mg
This difference comes from O moles in air - 29.69 mg/ 16 g/mol = 1.8556 mmol
then O moles coming from menthol - (1.28 + 0.64) - 1.8556 = 0.064 mmol
In menthol
C moles - 0.64 mmol
H moles - 1.28 mmol
O moles - 0.064 mmol
ratios of C:H:O
C H O
0.64 1.28 0.064
x1000 x1000 x1000 to get whole numbers
640 1280 64
10 20 1
Simplest ratio of C:H:O is 10:20:1
therefore empirical formula of menthol is C₁₀H₂₀O
Temperature is a measure of "Molecular movement"
In short, Your Answer would be Option B
Hope this helps!
Answer:

Explanation:
Because 3.005 grams of potassium lactate is added to 100. mL of solution, its concentration is:
![\displaystyle \begin{aligned} \left[ \text{KC$_3$H_$_5$O$_3$}\right] & = \frac{3.005\text{ g KC$_3$H_$_5$O$_3$}}{100.\text{ mL}} \cdot \frac{1\text{ mol KC$_3$H_$_5$O$_3$}}{128.17 \text{ g KC$_3$H_$_5$O$_3$}} \cdot \frac{1000\text{ mL}}{1\text{ L}} \\ \\ &= 0.234\text{ M}\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%5Cleft%5B%20%5Ctext%7BKC%24_3%24H_%24_5%24O%24_3%24%7D%5Cright%5D%20%20%26%20%3D%20%5Cfrac%7B3.005%5Ctext%7B%20g%20KC%24_3%24H_%24_5%24O%24_3%24%7D%7D%7B100.%5Ctext%7B%20mL%7D%7D%20%5Ccdot%20%5Cfrac%7B1%5Ctext%7B%20mol%20KC%24_3%24H_%24_5%24O%24_3%24%7D%7D%7B128.17%20%5Ctext%7B%20g%20KC%24_3%24H_%24_5%24O%24_3%24%7D%7D%20%5Ccdot%20%5Cfrac%7B1000%5Ctext%7B%20mL%7D%7D%7B1%5Ctext%7B%20L%7D%7D%20%5C%5C%20%5C%5C%20%26%3D%200.234%5Ctext%7B%20M%7D%5Cend%7Baligned%7D)
By solubility rules, potassium is completely soluble, so the compound will dissociate completely into potassium and lactate ions. Therefore, [KC₃H₅O₃] = [C₃H₅O₃⁺]. Note that lactate is the conjugate base of lactic acid.
Recall the Henderson-Hasselbalch equation:
![\displaystyle \begin{aligned}\text{pH} = \text{p}K_a + \log \frac{\left[\text{Base}\right]}{\left[\text{Acid}\right]} \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Ctext%7BpH%7D%20%3D%20%5Ctext%7Bp%7DK_a%20%2B%20%5Clog%20%5Cfrac%7B%5Cleft%5B%5Ctext%7BBase%7D%5Cright%5D%7D%7B%5Cleft%5B%5Ctext%7BAcid%7D%5Cright%5D%7D%20%5Cend%7Baligned%7D)
[Base] = 0.234 M and [Acid] = 0.500 M. We are given that the resulting pH is 3.526. Substitute and solve for p<em>Kₐ</em>:

In conclusion, the p<em>Kₐ </em>value of lactic acid is about 3.856.
Answer:
Explanation:
Tenochtitlan was located on a swampy island in Lake Texcoco in what is today south central Mexico. The Aztecs were able to settle there because no one else wanted the land. At first, it wasn't a great place to start a city, but soon the Aztecs built up islands where they could grow crops. The water also worked as a natural defense against attacks from other cities.
Read more at: https://www.ducksters.com/history/aztec_empire/tenochtitlan.php
This text is Copyright © Ducksters. Do not use without permission.