1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Step2247 [10]
3 years ago
7

Match each career with the academic requirement for the job.

Chemistry
2 answers:
Flura [38]3 years ago
5 0
What career is it so we can answer the problem
Whitepunk [10]3 years ago
4 0
I need the following option
You might be interested in
Particle quantity/number of Cu(NO3)2
Murrr4er [49]

Answer:

Cupid nitrate is what I'm going for

8 0
3 years ago
A colloid can be detected by using the _________ effect. mohs tyndall faraday brownian
Sliva [168]
<span>A colloid can be detected by using the Tyndall effect. The correct option among all the options that are given in the question is the second option. The other choices are incorrect and can be easily neglected. I hope that this is the answer that you were looking for and the answer has actually come to your desired help.</span>
3 0
3 years ago
Read 2 more answers
What is the molar mass of an unknown gas with a density of 2.00 g/L at 1.00 atm and 25.0 °C?
soldier1979 [14.2K]

Answer:

Explanation:Explanation:

Your starting point here will be the ideal gas law equation

∣

∣

∣

∣

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

a

a

P

V

=

n

R

T

a

a

∣

∣

−−−−−−−−−−−−−−−

, where

P

- the pressure of the gas

V

- the volume it occupies

n

- the number of moles of gas

R

- the universal gas constant, usually given as

0.0821

atm

⋅

L

mol

⋅

K

T

- the absolute temperature of the gas

Now, you will have to manipulate this equation in order to find a relationship between the density of the gas,

ρ

, under those conditions for pressure and temperature, and its molar mass,

M

M

.

You know that the molar mass of a substance tells you the mass of exactly one mole of that substance. This means that for a given mass

m

of this gas, you can express its molar mass as the ratio between

m

and

n

, the number of moles it contains

∣

∣

∣

∣

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

a

a

M

M

=

m

n

a

a

∣

∣

−−−−−−−−−−−−−

(

1

)

Similarly, the density of the substance tells you the mass of exactly one unit of volume of that substance.

This means that for the mass

m

of this gas, you can express its density as the ratio between

m

and the volume it occupies

∣

∣

∣

∣

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

a

a

ρ

=

m

V

a

a

∣

∣

−−−−−−−−−−−

(

2

)

Plug equation

(

1

)

into the ideal gas law equation to get

P

V

=

m

M

M

⋅

R

T

Rearrange to get

P

V

⋅

M

M

=

m

⋅

R

T

P

⋅

M

M

=

m

V

⋅

R

T

M

M

=

m

V

⋅

R

T

P

Finally, use equation

(

2

)

to write

M

M

=

ρ

⋅

R

T

P

Convert the temperature of the gas from degrees Celsius to Kelvin then plug in your values to find

M

M

=

1.02

g

L

⋅

0.0821

atm

⋅

L

mol

⋅

K

⋅

(

273.15

+

37

)

K

0.990

atm

M

M

=

∣

∣

∣

∣

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

a

a

26.3 g mol

−

1

a

a

∣

∣

−−−−−−−−−−−−−−−−

I'll leave the answer rounded to three

7 0
3 years ago
Which of the following is true about most predators? (Select all that apply.)
-Dominant- [34]

Answer:

select all of them except they are the biggest

3 0
3 years ago
Determine the molar concentration of na+ and po4 3- in a 2.25 M Na3 PO4 solution
muminat

Answer:

A. The concentration of Na^+ in the solution is 6.75 M.

B. The concentration of PO4^3- in the solution is 2.25 M.

Explanation:

We'll begin by writing the balanced dissociation equation for Na3PO4.

This is illustrated below:

Na3PO4 will dissociate in solution as follow:

Na3PO4(aq) —> 3Na^+(aq) + PO4^3-(aq)

Thus, from the balanced equation above,

1 mole of Na3PO4 produce 3 moles of Na^+ and 1 mole of PO4^3-

A. Determination of the concentration of Na+ in 2.25 M Na3PO4 solution.

This can be obtained as follow:

From the balanced equation above,

1 mole of Na3PO4 produce 3 moles of Na^+.

Therefore, 2.25 M Na3PO4 solution will produce = (2.25 x 3) /1 = 6.75 M Na^+.

Therefore, the concentration of Na^+ in the solution is 6.75 M

B. Determination of the concentration of PO4^3- in 2.25 M Na3PO4 solution.

This can be obtained as follow:

From the balanced equation above,

1 mole of Na3PO4 produce 1 mole of PO4^3-

Therefore, 2.25 M Na3PO4 solution will also produce 2.25 M PO4^3-.

Therefore, the concentration of PO4^3- in the solution is 2.25 M.

7 0
3 years ago
Other questions:
  • A container with a fixed volume, filled with hydrogen gas at -104c and 71.8 kPa is heated until the pressure reaches 225.9 kPa.
    7·1 answer
  • Draw the product formed when the structure shown below undergoes solvolysis in ch3ch2oh with heat.
    12·1 answer
  • An object with a mass of 7.1 g raises the level of water in a graduated cylinder from 25.1 mL to 32.4 mL. What is the density of
    9·1 answer
  • Which type of mutation involves adding dna bases?
    11·1 answer
  • In what kind of reaction do two or more substances combine to form a new compound
    10·1 answer
  • Explain the following observation. Treatment of alkyl chloride A with NaOCH2CH3 yields only one product B, whereas treatment of
    6·1 answer
  • List the difference between 3 allotropes of carbon
    11·1 answer
  • Is it possible to replace our dependency on fossil fuels with alternative renewable energy's?
    8·1 answer
  • What is the mole ratio of ethanol to water
    14·2 answers
  • Calculate the ph resulting from mixing 15. 00 ml of 0. 800 m hio3 (pka = 0. 77) with 45. 00 ml of 0. 0200 m naoh.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!